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Preface
The Herschel Space Observatory is an ESA cornerstone mission that was be launched on 14 May
2009, alongside the Plank cosmic microwave background mission. Originally known as FIRST (Far
InfraRed Submillimetre Telescope) its name was officially changed in the year 2000 in recognition
of the 200th anniversary of the discovery of infrared radiation by William Herschel in 1800. Her-
schel covers the range from 55 to 672 microns (530-5000GHz) - a region that is effectively totally
closed to ground-based astronomy - using a suite of three state-of-the-art instruments called PACS,
SPIRE and HIFI.

Herschel is an observatory mission: that is, its time is distributed among the community instead of
being used for a large-scale survey. It is also a consumables-limited mission - its useful life depends
on the lifetime of the helium in the dewar that is used to cool the instruments and is expected to be
in the range from 3.5 to 4 years from launch. As an observatory mission its success thus depends on
the quality of the science that the community carries out with it and how effectively the helium in its
dewar is converted into science. The "helium into science" ratio will be the principal deciding factor
in allocating time with the Herschel Space Observatory.

Many aspects of the Herschel Space Observatory are revolutionary. It is, thanks to its innovative
design, the largest dedicated infrared telescope ever to be launched into space by a considerable
margin. For the astronomer this converts into high sensitivity and a spatial resolution a factor of 6
better than any previous far-infrared telescope launched into space, making Herschel a pathfinder
mission in the far-IR. In fact, Herschel is limited in sensitivity mainly by the confusion from the
background of faint, unresolved sources. This makes Herschel a revolution for astronomy in a range
of the far-IR that has hardly been exploited so far. Herschel observations will have a huge impact on
astronomy and on our understanding of the universe.

This manual describes the observatory aspects of the mission: the spacecraft and its performance;
the mission; the space environment in which the Herschel Space Observatory is operating (very dif-
ferent from previous missions such as IRAS, ISO and the HST); and use of Herschel - from how an
observing proposal is received and treated, through to final archiving of the data. The aim is to give
an overview of Herschel to the user, describing everything that a potential observer needs to know at
a superficial level; where deeper knowledge is required afterwards, the observer should go to the
specific documentation for each system or sub-system (e.g. the individual instrument manuals, the
Data Processing user manual, etc.) The aim is that simply by reading this manual, or by using it for
reference, someone who is planning to request time with Herschel has enough information to decide
whether or not to proceed and to have a clear idea how to start.

When this manual was first written for the Guaranteed Time Key Programme Call back in Novem-
ber 2006, the launch of Herschel was still 30 months away and knowledge of how the spacecraft and
instruments would behave in space was theoretical. Similarly, some important elements of the Sci-
ence Ground Segment were still in development. At the time of this revision we are 22 months into
the mission and have characterised most aspects of Herschel's performance and operation thor-
oughly. As a result, this manual has undergone a further deep revision and its contents have been
updated to reflect what is now a quite mature operational reality.
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Chapter 1. Mission phases
Herschel flight operations are divided into a series of phases from the moment of launch. Broadly,
these are check-out, routine operations and post-operations, each with their individual sub-phases. In
theory, each mission phase should have an exact start and end point but, in reality, the requirements
of operations and the differing needs of the three instruments have made the different mission
phases blend slowly into each other, with slow transitions and no clear start and end point. Simil-
arly, the HIFI anomally meant that HIFI was delayed by about 6 months with respect to PACS and
SPIRE in entering routine operations and that it had to return over its tracks for a time and re-
conduct check-out activities that had already been completed months earlier.

Overall, Herschel operations have run very smoothly, largely due to the success of the long and in-
tensive pre-flight test campaign process, first at ESTEC and later at Kourou. As a result, some activ-
ities could be advanced considerably over the anticipated pre-launch schedule. Overall, remarkably
few check-out activities failed for such a complex mission, thus requiring much less re-planning of
in-flight tests than might otherwise have been expected.

1.1. Completed mission phases
1.1.1. Early mission history

Roll-out (shown in Figure 1.1), prior to launch, was conducted early on the morning of 13 May
2009 and, after a flawless countdown, launch occurred at 13:12UT on 14 May. Although there had
been storms and heavy rain as the guests were being transported to the VIP area, the clouds disolved
and launch conditions were perfect. Figure 1.2 shows the Ariane 5 blasting off with the Herschel
and Planck on board. The critical early milestones of fairing release, Herschel separation (at
13:37:55UT) from the Scylda and signal acquisition (at 13:49UT) were all passed successfully. The
frst command was executed by Herschel 58 min after launch at 14:10UT and Herschel began its
cruise to Lagrange.

Figure 1.1. Roll-out of the launcher for the Herschel-Planck mission on 13 May 2009.
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Figure 1.2. Launch of the Herschel-Planck mission on an Ariane 5-ECA at 13:12UT on 14 May 2009.

Figure 1.2 shows Herschel, Planck and the Sylda approximately 26 hours after launch, when they
were already 226 000km from Earth (approximately 0.5 Lunar Distances). It is already obvious from
this image how Herschel and Planck were released into slightly different transfer orbits due their
differing injection requirements for L2 orbit. A single injection manoeuvre was made 26h after
launch. This injection manoeuvre started at 15:16:25UT and lasted 22.5 minutes, giving a Delta-V
of 8.7m/s. This injection manouevre placed Herschel in what was effectively its final orbit and was
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so successful that no further corrections were required apart from the tiny, regular station-keeping
burns of typically 10-20cm/s with the thrusters, made every 4-6 weeks to maintain the orbit around
L2.

Figure 1.3. A sequence of images taken by British amateur astronomer Richard Miles using the 2-m
Fawkes South Telescope in Australia of Herschel (identified), Planck and the Sylda 26 hours after
launch, at approximately half the distance to the Moon.

After launch a Low Earth Orbit Phase (LEOP) started, an initial phase of check-out started with the
telescope closed and the instruments switched off while the operation of the spacecraft sub-systems
was checked. At this time the satellite was placed in a Sun-orientation allowing the spacecraft to
cool in the shadow of the sunshade and to outgas. However, given the danger of volatiles from the
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satellite condensing on the telescope, the mirror itself was heated during the initial cooldown phase
to avoid it acting as a cold-trap for the outgassed volatiles. This period involved checking basic
properties of the satellite (centre of mass, moments of inertia) and proper functioning of basic space-
craft sub-systems (Radio Frequency (RF), thermal control, power sub-system, data handling, atti-
tude and orbit control, thrusters, Solid State Recorders (SSR), etc.), at least to the extent that these
sub-systems were required for spacecraft operations.

While spacecraft check-out was underway, initial activities to check-out the instruments could com-
mence. The first instrument to be switched on to start payload operations was SPIRE on Day 6 after
launch, with PACS and HIFI switch-on on Day 11. Initial switch-on simply consisted of checking
that the measured voltages were in the expected range from the telemetry. This led into a long and
extremely detailed set of tests and checks of the functionality of each instrument that was the Com-
missioning Phase.

1.1.2. Commissioning Phase
Once Herschel was successfully launched and injected into the transfer trajectory towards the opera-
tional orbit, the spacecraft and instrument commissioning phase started. This consisted of a series of
298 individual tests and activities to check-out all aspects of instrument and spacecraft functionality.
A highlight of Commissioning was the opening of the telescope cryo-cover. This cover protected the
cryostat from condensation of outgassed volatiles. The cryo-cover was opened at 10:53UT on
Sunday 14 June (12:53 local time at Darmstadt). This involved firing explosive bolts to free the cov-
er after which a spring pulled it into an upright, totally open position after a series of oscillations
during which a spring steadied the heavy cryocover into a fully open position. The oscillations of
the cover caused the gyros to activate to stabilise the spacecraft pointing because the cover was
heavy enough to make the whole satellite move slightly in reaction (shown in Figure 1.4).

Figure 1.4. The telemetry received at MOC showing the oscillation in gyro response as the heavy cryo-
cover swung open and oscillated, causing the entire satellite to wobble slightly until it had reached a
stable open position. This gyro signal was the first evidence that the cryocover opening had been carried
out successfully.
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With the successful cryocover opening and the encouraging progress of commissioning activities, an
opportunity was seen to take some early images to make a blind test of the telescope focus and im-
age quality in advance of formal First Light. A series of PACS exposures were defined with a range
of bias settings, scanning through the most likely range of values in a test that was termed "Sneak
Preview". The resulting images are shown in Figure 1.5, which showed that the telescope focus and
alignment were excellent and that the optimum parameters for imaging were close to the best guess
values estimated by PACS prior to cryocover opening.

Figure 1.5. The Sneak Preview images of M51 in the three PACS bands, taken blind after cryocover
opening.

M51 was selected for several reasons, especially the fact that, apart from being available at the right
time and being a large, bright target, the galaxy is a classic infrared target with a lot of structure, so
considerable prior imaging existed at similar wavelengths (Figure 1.6) that could be used to check
the image quality and ensure that it met expectations. Once Sneak Preview had shown that the im-
age quality met all expectations, a more ambitious series of formal first light observations were
scheduled for each of the instruments to demonstrate their capabilities (Figure 1.7, Figure 1.8).
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Figure 1.6. A comparison of images of M51 at 160 microns for ISO, Spitzer and the Herschel sneak pre-
view image, showing the improved resolution and sensitivity from Herschel's larger mirror. No compar-
able image exists from IRAS, so the IRAS 100 micron image is shown for comparison.

Figure 1.7. The SPIRE First Light images of M74 in 250, 350 and 500 microns, obtained on 2009 July 9.
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Figure 1.8. The HIFI First Light spectra of DR21, obtained on 2009 July 9.

1.1.3. Performance Verification (PV) Phase
PV phase was designed to obtain in-flight characterisation of all instruments e.g. in terms of stabil-
ity, sensitivity, resolution, timing and other calibration parameters. It included the validation of the
instrument observing modes and the calibration and data processing of the resulting data. To achieve
this, a schedule of astronomical observations and internal calibrations, defined and iterated pre-
launch covering a nominal period of 2 months were be executed using normal observatory proced-
ures. This schedule was be based upon an agreed in-orbit calibration plan generated jointly by the
ICCs and the HSC. The plan contained a description of all planned calibration activities and associ-
ated calibration sources (internal and astronomical) required to characterise fully each instrument.

Each instrument received blocks of time, normally of two days each, to carry out its activities ac-
cording to the agreed PV plan, giving each instrument "two days on and four days off", allowing
data to be processed and new observations prepared. Weekly meetings then examined the progress
of the planned tests, adjusting the plan to allow extra time for failed tests to be repeated, where ne-
cessary, or for extra tests to be included. PV Phase started 64 days after launch - in line with pre-
launch plans - and, by 120 days after launch had delivered the first fully calibrated and usable ob-
serving modes for science scheduling.

PV Phase blended progressively into the Science Demonstration Phase of Routine Operations,
without a formal end, with days assigned to PV activities becoming increasingly infrequent. Apart
from HIFI recovery activities to check that the instrument was functioning correctly on its back-up
chain after the incident in July 2009 that stopped observations, which ran in four dedicated blocks
between 22 January 2010 and 17 March 2010, the last PV day included as such in the observing
schedule was 8 December 2009. After this, remaining PV activities to test and validate remaining
observing modes have been absorbed into routine calibration activities for each instrument, as have
the activities designed to test and validate the new, second-generation observing modes that have
been offered since.

Mission phases
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1.1.4. Science Demonstration Phase (SDP)
As noted above, the PV Phase blended progressively into the "Science Demonstration Phase", in
which each approved Herschel science programme had the opportunity to nominate a part of its ob-
servations -- typically 5-10% -- to be carried out early. The aim was to carry out observations and
observing programmes that would test the capabilities of Herschel in detail, frequently with difficult
and challenging observations. This allowed astronomers to test their observing strategy, compare
data quality with expectations and fine-tune their observing programmes, as well as allowing a glob-
al overview to be obtained of the performance of the three instruments.

Observations were carried out on a shared-risk basis: astronomers could opt to forego their propriet-
ary rights on data and allow them to be made public at the opening of the Herschel science archive
and, in return, would get the time used re-imbursed in their programmes by Herschel; alternatively,
they could maintain the data proprietary for one year from execution and have the data counted as
part of their Routine Science programme. So, in return for assuming part of the risk of testing ob-
serving modes early in the mission, astronomers had the chance to obtain early publication of Her-
schel data, selecting their most critical observations for rapid execution.

Science Demonstration Phase demonstrated that the main mapping modes that are the workhorses of
Herschel were essentially ready to go, particularly in its early mission phases, although some ex-
tremely useful input was obtained for observing strategies, leading to the recommendations on how
to obtain the best sensitivity in observations. Similarly, it gave a lot of valuable information on how
best to define spectroscopic observing modes. Early results from Science Demonstration Phase were
presented at the Herschel "Initial Results" Workshop at Madrid in December 2009 at which every
approved Herschel project had some observational data to present.

The prime period for SDP was defined to be from 15 September to 15 December 2009. Those SDP
observations that could not be completed by 15 December because of target visibility concerns, or
because the required observing mode had not been released, were given the highest priority for tele-
scope scheduling over the period up to 30 April 2010, when the few remaining SDP observations
that had not been scheduled reverted to being treated as Routine Science observations.

1.1.5. HIFI Priority Science Programme (PSP)
After the HIFI anomally, it was decided to define a variant of SDP for HIFI observers to be ex-
ecuted as rapidly after HIFI recovery as time permitted. This was the HIFI Priority Science Pro-
gramme, or PSP. Two blocks of telescope time in March and April were reserved for intensive HIFI
observing campaigns. Observations were divided into PSP1 (highest priority) and PSP2 (second pri-
ority) to fill these blocks of time efficiently, allowing a substantial part of the Herschel's HIFI obser-
vations to be carried out at the earliest possible date, after which HIFI would enter the standard Mis-
sion Planning cycle with a set number of days assigned each 4 weeks, with top priority going to
scheduling remaining PSP observations. A special HIFI initial results workshop was arranged in
Leiden in April 2010 to present a first look at PSP data and checkpoint for observing strategies.

1.2. Current and future mission phases
1.2.1. Routine operations (Routine Phase)

As with previous mission phases, there is no clear transition between SDP and routine operations.
As each project received its SDP data, if no significant problems were revealed, the Principal Invest-
igator (PI) was invited to have a release telecon with the Project Scientist and HSC staff to discuss
the data and any problems or issues that had arisen. If no serious issues were identified, the PI was
invited to release all, or part of the observations in his or her programme for scheduling, in which
case, the observations would be made available to the HSC Mission Planners. The first routine ob-
servations were observed on 18 October 2009 and, by December, the immense majority of sched-
uled observations came from released routine programmes. Over the course of the mission Herschel
will produce hundreds, or thousands of spectacular images like these Figure 1.9, Figure 1.10.
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Figure 1.9. M31's once and future stars. A combined Herschel and XMM image of M31 showing dusty
start-forming regions (Herschel) and the point-sources that represent highly evolved stars (XMM). The
Herschel data were taken at 250 microns with SPIRE between 17 and 21 December 2010. In the XMM
RGB image, red sources are low-mass x-ray binaries, while the blue sources are compact binaries with a
neutron star or black hole secondary.
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Figure 1.10. Galaxies spread like grains of sand on a beach. Every source in this GOODS-N field, which
is about the size of the Full Moon, is a distant galaxy. The insert to the left shows the indivdual frames in
each of the SPIRE bands while the main image combines them as an RGB. The colour of the galaxy gives
an indication of its red shift and, hence, distance: the reddest galaxies are the most distant and may be as
much as 12 000 million light years away; blue objects are relatively nearby and may be as close as 8000
million light years.

Herschel will carry out routine science operations phase for a minimum of 3 years. Early on, mainly
Guaranteed Time and "Key Project" observing programmes have received priority. Key Projects
were performed early in the mission to permit follow-up and to give the Guaranteed Time holders at
the HSC the opportunity to obtain real data to work with, in preparation for supplying community
support to the open time observers with the benefit of a thorough knowledge of the entire observing
chain from proposal submission to access and reduction of data. Almost all Key Programme obser-
vations are expected to be completed by May 2011, at which point OT1 observing programmes will
start to be heavily scheduled, although some OT1 observations have been scheduled since December
2010 where they help to improve efficiency by filling inconvenient gaps in the telescope schedule.

All observers can track the state of their proposals from the (password protected) proposal handling
pages of the HSC Web page and are notified when the resulting data has been passed through the
Quality Control process; this may take from 2-3 weeks to complete, although data is available for
retrieval from the HSC usually within 48 hours of the observations being executed. Observers can
also check both what observations are scheduled for observation and have been delivered to MOC
(http://herschel.esac.esa.int/observing/ScheduleReport.html) and the observing log (ht-
tp://herschel.esac.esa.int/observing/LogReport.html) from the HSC. Observations marked "Failed"
are automatically cloned and released for re-scheduling by HSC.

1.2.2. Boil off
There is considerable uncertainty about when boil off will happen. This is unlikely to be reduced
much in the future. Current best estimates place the most likely date for helium exhaustion around
the end of 2012, but with an uncertainty of several months. It is possible that in the last few weeks
of the mission it may be difficult or impossible to re-cycle the instrument coolers after the helium

Mission phases

10

http://herschel.esac.esa.int/observing/ScheduleReport.html
http://herschel.esac.esa.int/observing/LogReport.html
http://herschel.esac.esa.int/observing/LogReport.html


level has dropped below a certain point and that, as a result, only spectroscopy will be schedulable,
but this is still uncertain at this time as we do not know what the helium behaviour will be at very
low levels.

Once boil off has occurred Herschel's instruments will no longer operate. There is still considerable
discussion about what will happen to Herschel finally post-helium. MOC will continue to operate
Herschel for a time even after boil off has occurred for routine spacecraft housekeeping operations.
As the radiation monitors will continue to function indefinitely there is a suggestion that Herschel
could continue to function after MOC operations have ended as a space weather station. Alternat-
ively, it could be allowed to escape into solar orbit, or even crash into the Moon.

Table 1.1. Herschel mission key dates. Only approximate dates can be assigned to the different mission
phases as there is inevitably a progressive transition between mission phases rather than a sharp one; in
extreme cases there may be activities from three different mission phases progressing simultaneously
and, in some cases, the start and end of a phase is a matter of definition and different dates could be giv-
en to the ones that appear here. In particular, HIFI recovery activities meant that CoP and PV days were
scheduled months after the nominal end of these phases. Similarly, as reflected by this table, occasional
PV days were being scheduled for PACS and SPIRE long after even routine observations had started.

Mission phase Approximate Start Approximate End

Launch L=14 May 2009

Early Orbit Phase L 24 May 2009 (L+10 days)

Commissioning Phase L July 19th (L+66 days)

Performance Verification Phase 17 July 2009 (L+64 days) 25 November 2009 (L+195 days)

Science Demonstration Phase 11 September 2009 (L+120 days) 30 April 2010 (L+352 days)

Herschel Routine Phase 18 October 2009 (L+157 days) L+36 months (current best guess);
Boil-off = B

Run-down phase (3 months) B B+3 months

Mission consolidation phase (6
months)

B+3 months B+9 months

Active archive phase (48 months) B+9 months B+57 months

Archive consolidation phase (6
months)

B+57 months B+63 months (End of Herschel mis-
sion)

Historical archive phase (indefinite) B+63 months (TBD) End of all Herschel activity

1.2.3. Post-Operations Phase
The Herschel post-operations phase will consist of the rundown monitoring phase (starting at the
moment of helium boil-off), mission consolidation phase, active archive phase, and the archive con-
solidation phase (at which point the transfer to the subsequent historical archive phase takes place),
which is the final formal phase of the mission. Herschel is currently fully funded for 5 years of post-
operations.

The goal of this phase is, within the constraints of time and available resources, to maximise the sci-
entific return from the Herschel mission by facilitating continuing widespread effective and extens-
ive exploitation of the Herschel data. This will continue after the conclusion of this phase (i.e. in the
historical archive phase). Documentation will be extensively revised during this phase to provide a
legacy and the Herschel Interactive Processing Environment (HIPE) will continue to be updated and
refined in line with the state of knowledge of instrument behaviour and calibration.

The ultimate legacy of Herschel will be the historical archive, plus the sum of all the knowledge,
both scientific and technical, derived from implementing and operating Herschel.

1.2.4. Archive Phase
The historical archive phase is outside the funded Herschel mission. This phase commences after the
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end of the post-operations phase.

The historical archive will provide access to all Herschel observations and derived products. The
products will all be derived in the archive consolidation phase during the post-operations phase in a
consistent manner and to consistent standards using the best knowledge of Herschel instrument cal-
ibration and data processing. In addition, the software, documentation - manuals, etc.- and tools will
be available from the historical archive.

Mission phases
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Chapter 2. The Observatory
This section summarises the main characteristics of the Herschel spacecraft, its orbit, pointing per-
formance and observable sky regions.

2.1. Spacecraft overview
The Herschel spacecraft has a modular design, comprising the Extended Payload Module (EPLM)
and the Service Module (SVM). The EPLM consists of the PLM "proper" with a superfluid helium
cryostat - based on the proven ISO technology - housing the Herschel optical bench (HOB) with the
instrument focal plane units (FPUs), and supporting the telescope, the sunshield/shade, and payload
associated equipment. The SVM houses "warm" payload electronics and provides the necessary "in-
frastructure" for the satellite such as power, attitude and orbit control, the onboard data handling and
command execution, communications, and safety. Figure 2.1 shows the main components of the
Herschel S/C. Table 2.1 presents the Herschel Spacecraft key characteristics.

Figure 2.1. The Herschel spacecraft has a modular design. On the left, facing the "warm" side and on the
right, facing the "cold" side of the spacecraft, the middle image names the major components.

Table 2.1. Herschel Spacecraft key characteristics

S/C Type: Three-axis stabilised

Operation: Autonomous (3 hours daily ground contact period)

Dimensions: 7.5 m high x 4.0 m diameter

Telescope diameter: 3.5 m

Total mass: 3170 kg

Solar array power: 1500 W

Average data rate to instruments: 130 kbps

Absolute pointing Error (APE): 1.90 arcsec (pointing) / 2.30 arcsec (scanning)

Relative Pointing Error (RPE, pointing stability): 0.19 arcsec (pointing)

Spatial Relative Pointing Error (SRPE): < 1.5 arcsec

Cryogenic lifetime from launch: min. 3.5 years

2.1.1. Herschel Extended Payload Module
The EPLM is mounted on top of the satellite bus, the service module (SVM) and consists of the
cryostat containing the instruments' focal plane units (FPU) and the Herschel telescope. The follow-
ing sections describe the main components of the payload.

13



2.1.1.1. The Telescope

So that the favourable conditions offered by being in space can be exploited to the full, Herschel
carries a precision, stable, low background telescope (Figure 2.2). The Herschel telescope is pass-
ively cooled, allowing the size limitations imposed by active cooling to be overcome. Thus its dia-
metre is only limited by the size of the fairing on the Ariane 5-ECA rocket. The Herschel telescope
has a total wavefront error (WFE) of less than 6 µm (corresponding to "diffraction-limited" opera-
tion at < 90 µm) during operations. It also has a low emissivity to minimise the background signal,
and the whole optical chain is optimised for a high degree of straylight rejection. In space the tele-
scope cools radiatively, protected by a fixed sunshade, to an operational temperature in the vicinity
of 85 K, with a uniform and very slowly changing temperature distribution.

The chosen optical design is a classical Cassegrain with a 3.5-m diameter primary and an "under-
sized" secondary. The telescope has been constructed almost entirely of silicon carbide (SiC). The
primary mirror (M1) has been made out of 12 segments that have been brazed together to form a
monolithic mirror, which was machined and polished to the required thickness (~3-mm) and accur-
acy. The secondary mirror (M2), with 308-mm diameter, has been manufactured in a single SiC
piece. It is adjusted on the SiC barrel by tilt and focus adjustment shims. In order to avoid the Nar-
cissus effect on the detectors, the central part of the secondary mirror is shaped in such a way that no
parasitic reflected beam can enter the focal plane.

The hexapod structure (also made of SiC) supports M2 in a stable position with respect to M1. Fi-
nally, three quasi-isostatic bipods, made of titanium, support the primary mirror and interface with
the cryostat. The focus is approximately one metre below the vertex of M1, inside the cryostat.

The proper telescope alignment and optical performance have been measured on ground in cold con-
ditions. The measured wavefront performance in cold is in line with the requirements. In-flight res-
ults confirm the correctness of the focus position.

The M1 and M2 optical surfaces have been coated with a reflective aluminium layer, covered by a
thin protective "plasil" (silicon oxide) coating. The telescope was initially kept warm after launch
into space to prevent it acting as a cold trap while the rest of the spacecraft was cooling down.

Figure 2.2. The Herschel telescope flight model.
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Key telescope data are summarised in Table 2.2.

Table 2.2. The Herschel Telescope's predicted characteristics at working temperature (70 K)

Configuration: Cassegrain telescope

M1 Free diameter: 3500-mm

Focal length: 28500-mm

f-number: 8.68

Field of View radius: 0.25°

M1 curvature radius / conic constant: 3499.02-mm / -1

Aperture stop / distance to M1 apex: M2 mirror / 1587.555-mm

M2 diameter: 308.11-mm

M2 curvature radius / conic constant: 345.2-mm / -1.279

Image diameter: 246-mm

Image curvature radius / conic constant: -165-mm / -1

On-axis best focus distance to M1 vertex: 1050-mm

2.1.1.2. The Cryostat

The Herschel cryostat houses the focal plane units of the three scientific instruments depicted in Fig-
ure 2.3. The cooling concept for the Herschel instruments is based on the proven principle used for
the ISO mission. The temperature required in the instrument focal plane is provided down to 1.7K
by a large superfluid helium Dewar (helium at 1.6K), sized for a scientific mission of 3.5 years. This
is achieved with a total amount of 2160 litres of helium cryogen. The cryostat provides 1.7K as its
lowest service temperature to the instruments. Further cooling down to 0.3K, required for two in-
struments (the SPIRE and PACS bolometers) is achieved by dedicated 3He sorption coolers that are
part of the respective instrument focal plane unit. In orbit the liquid Helium is maintained inside the
main tank by means of a phase separator (a sintered steel plug). The heat load on the tank will evap-
orate the Helium over the mission time at an estimated rate of about 200 grams per day. The en-
thalpy of the gas is used efficiently to cool parts of the instruments that do not require the low tem-
perature of the tank (two temperature levels, at around 4K and around 10K). After leaving the in-
struments the evaporated gas is further used to cool the 3 thermal shields of the cryostat.
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Figure 2.3. The Herschel cryostat.

During ground operations, the vacuum vessel was closed by the means of a cover, located at its top,
which was opened once in orbit. To maintain a cold environment inside the cryostat during the last
few days before launch in Kourou, an auxiliary liquid Helium tank was used. The space side of the
Cryostat Vacuum Vessel (CVV) is used as a radiator area to cool the CVV on orbit to a final equi-
librium temperature of about 70K. This radiator area is coated with high emissive coating to achieve
low temperatures in the L2 orbit. Multi-Layer-Insulation (MLI) covers the outer CVV-surfaces, in
order to insulate it from the warm items (satellite bus and Sunshield). The outer layer of the MLI is
optimised for the lowest temperature of the CVV. The outside of the cryostat is the mechanical and
thermal mounting base for the Herschel telescope, the local oscillator unit of HIFI, the Bolometer
Amplifier Unit of PACS and the large sunshield protecting the CVV from the sun.

2.1.1.3. Instruments

The science payload is accommodated both in the "cold" (CVV) and "warm" (SVM) parts of the
satellite. The instrument FPUs are located in the "cold" part, inside the CVV mounted on the optical
bench, which is sitting on top of the superfluid helium tank. They are provided with a range of inter-
face temperatures from about 1.7 K by a direct connection to the liquid superfluid helium, and addi-
tionally to approximately 4 K and 10 K by connections to the helium gas produced by the boil-off of
liquid helium gas, which is used efficiently to provide the thermal environment necessary for their
proper functioning. The "warm" - mainly electronics - parts of the instruments are located in the
SVM. The following instruments are provided within the Herschel spacecraft:

• The Photodetector Array Camera and Spectrometer (PACS)

• The Spectral and Photometric Imaging REceiver (SPIRE)

• The Heterodyne Instrument for the Far Infrared (HIFI)

The instruments are described in their respective users' manuals

2.1.2. The Service Module (SVM)
The service module (SVM) is the box-type enclosure at the bottom of the satellite, below the EPLM
and carries all spacecraft electronics and those instrument units that operate in an ambient temperat-
ure environment. It is depicted in Figure 2.4.
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Figure 2.4. The Herschel service module.

SVM modularity is achieved by implementing units of similar function on each of the panels. Panels
are either dedicated to one instrument or to a single sub-system (Attitude Control, Power, Data
handling-telecommunications). The propellant tanks are symmetrically implemented inside the cent-
ral cone. The SVM also ensures the mechanical link between the launcher adapter and the EPLM.

2.1.2.1. The Sun shield and solar arrays.

The electrical power of the satellite is produced by the solar array. The solar array is in front of the
cryostat to protect it from solar radiation. The rear of the sunshield is covered with multi layer insu-
lation as is the part of the cryostat facing this warm part of the system. The geometrical design has
to consider the size of the cryostat and the telescope, the required sun aspect angles of the s/c in or-
bit and the limited diameter of the fairing of the launcher. For Herschel a relatively simple system
with a fixed solar array has been selected. The lower part actually carries the solar cells. The upper
part is free of solar cells to allow it to be at a lower temperature, which in turn helps for the tele-
scope to stay at the required temperature. The height of the sunshield is driven by the need to shade
the entire telescope when the spacecraft is pointed closest to the sun (60° Sun aspect angle).

2.1.3. Spacecraft Axes definition.
The Herschel s/c coordinate axis system is defined in [RD1] as follows:

• The positive X-axis is perpendicular to the separation plane and nominally coincides with the
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longitudinal launcher axis. The positive X-axis shall be along the nominal optical axis of the
Herschel telescope, towards the target source.

• The Z-axis forms a plane with the X-axis perpendicular to the separation plane such that nomin-
ally the Sun lies in the XZ plane (zero roll angle), positive towards the Sun. In other words, the
XZ plane is the symmetry plane of the solar array, the Z-axis pointing outwards from the solar
array.

• The Y-axis completes the right-handed orthogonal reference frame.

Figure 2.5. Herschel s/c axes (from [RD1])

2.2. Spacecraft orbit and operation
Herschel and Planck was launched aboard a single Ariane V ECA launch vehicle from European
spaceport at Kourou. The launch made use of the Sylda 5 adapter with Planck being the lower pas-
senger below the Sylda 5 and Herschel mounted as upper passenger. The two spacecraft separated
within 30 minutes after launch and proceeded independently to different orbits about the second
Lagrange point of the Sun-Earth system (L2). (see Figure 2.6). Even though both satellites orbit
around L2, their orbits are quite different. Herschel acquired its final orbital position at around 1.5
million km from the Earth with only a minor correction manoeuvre after a transfer of about sixty
days.
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Figure 2.6. Left: Position of the Lagrange points for the Sun-Earth/Moon system. L2 lies 1.5 million kilo-
metres from Earth. Right: An example of a Lissajous orbit around L2. The orbit x and y-axis are as
shown in the plot on the left, the z-axis is normal to paper.

The Herschel spacecraft was eventually placed in a large "halo" orbit around L2 (halo orbits are spe-
cial cases of Lissajous orbits around Lagrange points where the in-plane and out-of-plane frequen-
cies are the same), with an amplitude of about 700 000-km and a period of approximately 178 days.
The distance from the Earth ranges from 1.2 to 1.8 million km.

The orbit chosen for Herschel presents a number of advantages summarised below:

• Simplifies long observations, since the Sun and the Earth remain close to each other as seen by
the S/C (Sun-S/C-Earth angle always < 40°)

• Very stable thermal and radiation environment

• No trace of atmosphere

• A large halo orbit can be achieved without any injection ∆v

Major drawbacks are the long distance for communications and the fact that orbits around the L2 are
unstable; without orbit corrections the spacecraft would deviate exponentially from the nominal one.
Small correction manoeuvres, applied at approximately monthly intervals, maintain the orbit close
to the nominal one. Figure 2.7 shows an example of large halo orbit around L2 (from [RD2]).
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Figure 2.7. A 3D representation of a large halo orbit around L2. The Earth is located at (0,0,0). Red
tracks are the projection on the three orthogonal planes of the 3D orbit (blue track).

Herschel operations are performed by the European Space Operations Centre (ESOC) located in
Darmstadt (Germany). The main ground station is New Norcia (Australia), which is equipped with a
a 35-metre antenna using X band up and down links. New Norcia is backed up by the Cebreros
ground station (Spain). In the phase immediately after launch the Kourou (French Guiana) and Vil-
lafranca (Spain) ground stations were also used. During routine operations, the ground station com-
munication link is restricted to a duration of approximately 3 hours. During this time, the spacecraft
antenna is be pointed to the Earth. The data stored in the on-board solid state mass memory are
downlinked, and the mission time line with the new schedule is uplinked. Real time operations and
spacecraft maintenance are also carried out during this period. The rest of the time the satellite oper-
ates autonomously. The system has been designed to support 48 hours of autonomous operation,
with requires a solid state mass memory capability of 25 Gbt. The amount of Herschel data down-
loaded per day is in excess of 8 Gbt.

2.3. Sky visibility
The areas of the sky accessible to the Herschel telescope are determined by a number of constraints
applicable to Sun, Earth, Moon and other bright solar system objects. In particular, the following
constraints are applicable through the mission:

• Sun-S/C-LoS angle in the S/C XZ plane (Solar Aspect Angle or SAA) of 60°.8 to 110° for nor-
mal operations. Please notice that the allowed range has been reduced with respect to the origin-
al one (60° to 120°) since in the extreme SAA range ('warm' attitude range, SAA in the 110° to
120° interval) a noticeable pointing performance degradation (larger APE and pointing offset
drift) due to thermo-elastic effects has been observed. Moreover, this degradation persists even
if the S/C is brought back to 'cold' attitude until the structure settles back in the original position.
Nevertheless, if deemed unavoidable, short (less than 1 hour) observations in the 'warm' SAA
range (110° to 120°) can be scheduled at the end of the operational days. The observer should be
aware that in such cases, a degradation of the pointing accuracy is very likely. Similarly, post
launch a small change was made to the extreme range of permitted of solar aspect angles to limit
it to a maximum range from 60°.8 to 119°.2.

• Maximum roll angle of ±1°
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In addition, the following extreme Earth and Moon angles do occur across the mission (to be taken
into account for straylight considerations):

• Sun-S/C-Earth angle of 37°

• Sun-S/C-Moon angle of 47°

In order to avoid straylight pollution and also for safety reasons (to prevent large fluxes of light
from reaching detectors), the nominal half-cone exclusion angles listed in Table 2.3 apply to obser-
vations towards major planets.

Table 2.3. Nominal exclusion angles (half-cones) for observation towards major planets

Instrument Mode Mars Jupiter Saturn Instrument

Critical

a. SPIRE has determined that, while Jupiter and possibly Saturn will not damage the instrument, they would
render it inoperable for a significant period (possibly even an entire OD)

b. For SPIRE PACS parallel mode both the SPIRE and PACS restrictions apply.

c. HIFI wishes to avoid straylight pollution when observing fainter objects with a SSO close to the instrument
LoS. The instrument will not be harmed by the presence of a major SSO in the FoV and will, in fact, even use
Mars as its primary calibrator.

d. During slews, the detectors are ON (photometry, spectroscopy or parallel mode).

e. During non-SSO PACS observations. PACS may well wish to observe these SSOs directly.

SPIRE Slew 15 arcmin 15 arcmin 15 arcmin Yesa

Pointing 1.5 deg 1.5 deg 1.5 deg Yesa

HIFI Slew 36 arcmin 36 arcmin 36 arcmin Noc

Pointing 36 arcmin 36 arcmin 36 arcmin No

PACS Slewd 4 arcmin 4 arcmin 4 arcmin No

Pointinge 1.5 deg 1.5 deg 1.5 deg No

The time windows when a fixed or moving target or list of targets are visible can be calculated with
HSpot. The tool provides an easy way to check in which time intervals a source is visible during the
mission. The visibility calculation does not yet take into account the avoidance cones around
Jupiter, Saturn and Mars described above.

The sky visibility for each date has been determined by the launch date (14th May, 2009) and the or-
bit of the satellite. Considering a nominal duration of the operations, all areas in the sky are visible
at least 30% of the time. The sky visible region moves slowly on a daily basis. The two snapshots at
the bottom of Figure 2.8 illustrate the typical sky visibility differences after a 3 month interval; al-
though this is calculated for an different launch date to the actual one, the graphic remains a valid
representation of the effect.
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Figure 2.8. Top: The sky visibility across the sky as a fraction of the total hours through the Herschel
mission, represented as a colour scale (shown at right) where black represents 30% visibility and white
represents permanent sky visibility. Bottom: sky visibility for two sample dates. Shadowed areas repres-
ent inaccessible sky areas.

2.4. Herschel pointing performance
This section deals with the pointing performance of the Herschel spacecraft. The spacecraft Attitude
Control and Measurement System (ACMS) consists of several components, as depicted in Fig-
ure 2.9. The main constituents of the ACMS are the attitude control computer (ACC), gyroscopes
(GYR), star trackers (STR), reaction control system (RCS), reaction wheel assembly (RWA), Sun
acquisition sensors (SAS), coarse rate sensors (CRS) and attitude anomaly detectors (AAS).
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Figure 2.9. Diagram of the Herschel/Planck avionics.

In normal operation, the spacecraft attitude is commanded by means of the reaction wheel system. It
comprises four 8.6 kg wheels in a skewed configuration, each with a momentum storage capacity of
30 Nms and a maximum delivered reaction torque of 0.215 Nm in either positive or negative direc-
tion.In the baseline configuration, all four whels are powered and used for actuation, providing op-
timum slew performance and momentum storage. Nevertheless, the ACMS is also capable of oper-
ating with only three reaction wheels powered. In the nominal configuration, the maximum slew
speed is 0.00204 rad/sec, i.e. ∼ 7 arcmin/sec.

In normal science operation, the spacecraft attitude is controlled by means of two components: the
star trackers (STR) and gyroscopes (GYR). The STR comprises two cold-redundant units, nomin-
ally aligned with the -X axis. The STR hardware include:

• An objective lens.

• A baffle to protect from undesired straylight from the Sun and other bright sources.

• The focal plane assembly, containing a CCD detector and a thermo-electric cooler for CCD
cooling.

• The sensor electronics.

From a functional point of view, the STR can be seen as a video camera plus an image processing
unit that, starting from an image of the sky, extracts the attitude information measured with respect
to the J2000 inertial reference system and delivers it to the ACC. A CPU (ERC32 microprocessor)
controls the CCD sensor and also carries the image processing task.

Key characteristics of the Herschel's STR are:

• The ability to determine the inertial position from "lost in space".

• FoV: 16.4 × 16.4 deg².

• An onboard catalogue, based on Hipparcos, of some 3000 bright stars.
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• A minimum of 3 stars, 9 is the maximum due to HW limitations.

The STR bias is the largest contributor to absolute pointing error and is pixel-dependent (some 0.8"
× √2)

The STR is provided with an enhanced performance mode the so-called "interlaced mode", only ap-
plicable if there are ≥ 15 stars in FoV. The STR samples at twice the nominal frequency (4 Hz), 9
stars at a time. In order to get the maximum accuracy it is necessary that the ACC provides as input
to the STR an accurate value of the S/C angular rate (the maximum performance is achieved with
rate errors below 0.2 arcsec/sec).

Gyroscopes (GYR) are devices that use a rapidly spinning mass to sense and respond to changes in
the inertial orientation of it spin axis. Rate/rate-integrating gyros provide high-precision measures
of the the spacecraft angular rate. The Herschel's ACMS is provided with four gyroscopes mounted
in a tetrahedral configuration. The four gyroscopes are hot-redundant, and each of the four can re-
place any of the others. The fourth gyroscope is not used for control, but serves to detect an incon-
sistency in the output of the other three.

The STRs provide an absolute reference, but with limited accuracy. On the other hand, GYRs are
very accurate, but only on short temporal (bias drift, 0.0016 deg/hour) and spatial (variation in the
scale factor should be taken into account for distances larger than 4 deg) scales. Therefore, the GYR
attitude must be recalibrated using the STR information. Therefore, in normal operation the space-
craft attitude is computed by combining the STR and GYR measurements in the ACC using a linear
Kalman filter. The so-called "filtered attitude" is sampled and downloaded with a frequency of 4Hz.

Herschel pointing modes are based either on stare pointings (fine pointing mode) or moving point-
ings at constant rate (line scan mode). Raster maps are 'grids' of stare pointings at regular spacings;
in the position switching and nodding modes, the boresight switches repeatedly between two posi-
tions in the sky. Scan maps are sequences of line scans at regular spacing. Allowed angular speed
ranges from 0.1 arcsec/sec to 1 arcmin/sec. In addition, the Herschel spacecraft can track moving
Solar System targets at rates up to 10 arcsec/min.

2.4.1. Pointing accuracy definitions
In this section, formal definitions of the spacecraft pointing accuracy parameters are provided. The
term 'pointing', when applied to a single axis (e.g. the telescope boresight), refers to the unambigu-
ous definition of the orientation of this axis in a given reference frame. When characterising the
pointing performance of the telescope, it is possible to provide a figure of the absolute attitude ac-
curacy provided by the ACMS (absolute pointing error), or how accurate the 'a posteriori' know-
ledge of the absolute attitude (the absolute measurement error) can be, or how stable the pointing is
(the relative pointing error). Furthermore, the pointing performance can be also characterised in
terms of the relative accuracy of a set of attitude measurements (the spatial relative pointing error).
The latter measurement is important to characterise the accuracy of the relative astrometry in a map
comprising several pointings (e.g. from a raster pointing).

Herschel pointing accuracy definitions, presented below, are based on the prescriptions given in the
ESA Pointing Error Handbook (ESA-NCR-502):

• Absolute Pointing Error (APE): the angular separation between the desired direction and the
actual instantaneous direction.

• Absolute Measurement Error (AME): the angular separation between the actual and the es-
timated pointing direction (a posteriori knowledge).

• Pointing Drift Error (PDE): the angular separation between the average pointing direction over
some interval and a similar average at a later time.

• Relative Pointing error (RPE) or pointing stability: the angular separation between the in-
stantaneous pointing direction and the short-time average pointing direction at a given time peri-
od (in this case 60 sec).
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• Spatial Relative Pointing Error (SRPE): angular separation between the average orientation of
the satellite fixed axis and a pointing reference axis, which is defined to an initial reference dir-
ection.

2.4.2. Pointing performance
The main pointing error contributors within the Herschel spacecraft are:

• To AME and APE:

• Position-dependent bias within STR. It is also the main contributor to SRPE.

• Residuals from calibration

• Thermo-elastic stability of the structural path between STR and FPU

• Instrument LoS calibration accuracy w.r.t. ACA frame (best for PACS)

• To PDE: Thermo-elastic stability

• To RPE: The main contributor is the noise in the control loop comprising STR+Gyro noise at-
tenuated by a linear Kalman filtering.

Table 2.4 summarises the pointing performance of the Herschel spacecraft. The most outstanding
non-compliance is related to the SRPE (required 1 arscec vs. predicted/measured performance
2.44/1.45 arcsec).

Table 2.4. Herschel pointing requirements (from SRS v3.2) compared with predictions and measured
performance. Goal conditions assume 18 stars available for guidance within the STR

Baseline (arcsec) Goals (arcsec)

Name Requirement Performance Requirement Performance

Predic./Measur. Predic./Measur.

APE point 3.7 2.45/1.90 1.5 1.45/1.35

APE scan 3.7 2.54/2.30 1.5 1.63/n.a.

SRPE 1.00 2.44/1.45* 1.00 1.52/1.1

*The SRPE has been only measured for small (1 arcmin) two-point rasters.

2.4.3. Gyro propagation mode
As commented above, the STRs provide an absolute reference, but are not accurate enough on their
own to satisfy the performance requirements. In particular, they are responsible for the SRPE non-
compliance. GYRs only produce accurate attitude measurements in short temporal and spatial scales
and their measurements should be recalibrated using the STR information. A mechanism has been
devised to perform SRPE-compliant raster pointings by using exclusively the accurate gyro inform-
ation. Two variants of this mechanism can be considered:

• On-board gyro-propagation mode or Calibration Pointing (CP). This procedure is implemented
within the ACMS software only for the basic raster mode; gyro-propagation is performed on-
board. The gyro-propagated attitude estimates are provided in S/C housekeeping telemetry.

Warning
At the time of writing these lines (March 2011), the use of this mode in PACS spectroscopy obser-
vations is being assessed.
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• On-ground attitude reconstruction by gyro-propagation. This is a ground procedure implemented
within the FDS software that reconstructs the attitude estimates based on rate information
provided by the gyroscopes. It is intented to improve our a posteriori knowledge of the S/C atti-
tude. It is applicable to any mode with OFF positions (i.e. nodding, raster with off position, line
scan with off position).

Warning
The performance of the on-ground attitude reconstruction by gryo-propagation is below the expect-
ations (in general there is no noticeable improvements with respect to the 'standard' filtered attitude
etimates) and therefore is not offered as a common-user functionality. For specific enquiries about
this topic, please contact Helpdesk http://herschel.esac.esa.int/esupport/.

If gyro-propagation is to be used within an operational day (OD), the following steps must be con-
sidered:

• Once per OD, an initial fixed pointing of about 60 min is made to calibrate the GYR bias.
Whenever gyro-propagation is requested, this is taken into account and a slot is included within
the DTCP.

• Within the next science window period (i.e. the rest of the OD), gyro-propagation observations
can be scheduled, provided that they respect the following conditions:

• An initial 300 sec calibration in the observation gyro calibration position (GCP, a.k.a. OFF
position)

• <600 sec between the recalibrations of the GYR

• 60 sec periodic recalibration at the GCP.
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Chapter 3. Overview of scientific
capabilities

Herschel is a versatile observatory with a wide range of capabilities that cover point-source photo-
metry, imaging, large area mapping and spectroscopy at both intermediate and high resolution. Des-
pite the relatively small size of far-IR detectors compared to their visible and near-IR equivalents, it
can map large areas of sky efficiently to faint limits. The telescope was designed to give diffraction-
limited images - resolution 6 arcseconds - at 90 microns but, in space, it actually performs signific-
antly better than this, with diffraction-limited images being seen as short as 70 microns, with a
FWHM of 5.5 arcseconds at this wavelength.

Note
In mapping mode, at fast scan speeds there is, as is logical, some degradation of the PSF.

3.1. General aspects
The Herschel Space Observatory covers the wavelength range from 55 - 672 microns. This corres-
ponds to the maximum of emission for black bodies in the range from 5-50K approximately. Hence
Herschel is be best suited to observing icy outer solar system objects and cool and cold dust in the
universe, both in the rest frame and redshifted. A prime objective has been to study the formation of
galaxies in the early universe, as cool dust is an excellent tracer of star formation. The Herschel
range is also the one at which cool and cold gases emit their strongest lines, meaning that Herschel
is also a superb laboratory for examining the chemistry of planetary atmospheres and of the inter-
stellar medium.

Figure 3.1. The Herschel Focal Plane.
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Note
The short wavelength cut-off for Herschel is a matter of definition. For PACS the detector sensitiv-
ity below 55 microns is too low to be of practical use and so this value is given as a limit here.

The Herschel Focal Plane is shown in Figure 3.1. The different instrument arrays and apertures are
labelled. The full, unvignetted field of view is approximately half a degree.

3.2. Urgent scheduling requests and ToOs
There are a series of factors that decide how quickly Herschel can react to an urgent scheduling re-
quest. These are described briefly below. The faster the reaction required, the bigger the effort that
is required and the greater the knock-on effects and risk to normal spacecraft operations. In general,
any change to the observing schedule made less than 3 weeks before execution of the observations
requires special treatment and must be justified carefully. The schedule will only be changed once
submitted to MOC if there is a contingency (an instrument problem or operational issue that would
lead to a significant loss of observing time, or a ToO); it will not be changed for "routine" tweaking
of AORs.

The bottom line is that Herschel can, in normal circumstances, only guarantee to react in 7 days
from an urgent request but can react in 5 days in favourable circumstances. Most of the steps de-
scribed below apply too to normal observations although, of course, on a much less compressed
schedule.

The decision to attempt a fast turnaround time for an urgent scheduling request is not taken lightly.
MOC at Darmstadt have to confirm that they can process the re-delivered observing schedule in
time and the HSC Mission Planning Group have to agree to a delivery schedule that allows MOC
enough time to carry out the full processing and check procedure.

3.2.1. Ground station access to Herschel
The Herschel Space Observatory is fundamentally an "off-line" mission and has been designed as
such, so reacting rapidly is problematic. "Off-line" means that, instead of being in permanent con-
tact with Herschel there is a Daily TeleCommunications Period (DTCP), normally for 3 hours each
day, when the data stored on board must be downlinked and new observations uplinked. The DTCP
is within a few hours of local midnight at the ground station (prime is New Norcia, back-up is
Cebreros). The DTCP time will also vary according to whether Planck or Herschel is visible to the
antenna first - every few months their orbits cross over and the lead satellite in the DTCP changes -
and also to demands on Ground Station resources from other missions.

This means that everything must be ready for uplink before the DTCP starts. This DTCP start time
defines an unbreachable barrier and everything is calculated backwards from this moment.

At each DTCP, observations are uplinked for execution from 27 to 51h ahead. This means that even
if a Ground Station pass is missed due to a communication problem, there are enough observations
in the on-board memory for Herschel to continue operating until the end of the DTCP period the fol-
lowing day. All processing time must be added to this minimum 51h.

3.2.2. How is a ToO alert triggered?
There are two methods. Our preferred method is "pre-approval", but ToO alerts may be triggered
without pre-approval if the case is compelling, the circumstances justify it and there is a demon-
strated need to react quickly to avoid missing a major scientific opportunity.

3.2.2.1. Pre-approval by HOTAC

This is our preferred method. A normal proposal is submitted in the regular Calls for Proposals and
evaluated. The proposal should included clear trigger criteria and an expected reaction time that al-
lows its feasibility to be assessed. If HOTAC approves the request, the HSC is required to carry out
the observations if the trigger criterion is met and scheduling constraints permit it.
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Note
Sometimes a request may simply not be feasible for operational reasons such as having the wrong
instrument active, or because of operational constraints

This method has various advantages, not least of which is that the PI knows in advance that the ob-
servations are approved and will be made if possible and will be propietary. The observations are
also already available in the HSC database, technically checked and only need to be activated, sav-
ing valuable time on activation.

If the PI is satisfied that the trigger conditions are met and that the target is visible, he or she should
send a Helpdesk ticket in the ToO Department, supplying all the necessary information to allow the
observations to be taken and a short justification of the trigger. The box stating that the ToO is pre-
approved by HOTAC should be ticked and the proposal name given to identify it. When the ticket is
sent an SMS message will go direct to the Project Scientist and HSC, alerting them of the triggering.

3.2.2.2. Spontaneous ToO alerts

Not all ToOs can be anticipated. Sometimes something will happen that is too good an opportunity
to miss; it may be a newly discovered comet that will become bright in 6 months time, or a sudden
and unexpected outburst of a known object. In this case things can be more complex and may be
slower.

The PI should fill out the same form in the http://herschel.esac.esa.int/esupport/ ToO Department.
The alert must be justified and the required observations either provided or, at very least, described
in enough detail that an expert at HSC can prepare them. When the ticket is sent an SMS message
will go direct to the Project Scientist and HSC, alerting them of the triggering. No action to schedule
observations will be taken at HSC until the Project Scientist has approved the request. The Project
Scientist's first reaction will usually be to request a technical assessment of the observations and tar-
get visibility from HSC. This may require some backwards and forwards iteration with the PI to get
the observations right so that the time impact can be assessed and the feasibility ensured. If the re-
quest is for observations of a Solar System Object (SSO) it may be necessary for software support at
the HSC to add the SSO ephemeris to HSpot. If the requested observing time is significant, the
Project Scientist may seek the approval of the HOTAC Chair to add the observations to the sched-
ule. Approval (or not) is then communicated by the Project Scientist in a reply to the Helpdesk tick-
et.

3.2.3. Processing an urgent scheduling request
Once the observations are approved by the Project Scientist, they are processed. The target day for
execution is identified in consultation with MOC. Observations are normally submitted to MOC 3
weeks in advance of execution. This means that any request for an observation less than 3 weeks
ahead will require re-processing at HSC and at MOC. Observations already in the database will be
linked to the correct instrument control software and time estimator version and released to the Mis-
sion Planners who then proceed to de-commit the observing schedule for the day so that it can be
modified. Observations not in the database must be submitted as a new proposal first to get them in-
to the database. Once a de-commit of a schedule occurs it is removed completely from the system,
meaning that even if the same schedule is subsequently re-instated, it must be completely re-
processed at MOC, so a schedule is only de-committed when it is certain that a re-plan is necessary
and feasible.

The new observation(s) is/are fitted into the schedule and a revised schedule generated. The revised
schedule goes through a list of checks and is then submitted to the instrument team(s) and the
Project Scientist for final approval; either may request revision to the schedule as drafted if they
identify any problems with it. Only when all parties are satisfied will the schedule be transmitted to
MOC. This modifies the sequence of pointing commands for the spacecraft and so has a knock-on
effect for the following day too because it will affect the initial state of the spacecraft gyros for the
next observing day, meaning that MOC must generate a new solution for obtaining the desired the
pointing for both days, even though HSC has only re-generated the schedule for the first of them.

The time required at HSC to process the observations and generate the new schedule depends on the
complexity of the changes to the schedule and the availability of the specialists to approve the draft
schedule and any modifications requested: it may require a full working day.
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When the new schedule is approved, it is transmitted to MOC by FTP. Initial processing is automat-
ic. Once this is complete a member of the Flight Dynamics Team will continue processing interact-
ively. If all the checks are passed, the schedule will be passed on to a member of the MOC Mission
Planning Team who will generate the file containing all the telecommands that will be transmitted to
the spacecraft. This is usually the slowest and most complex part of the processing chain due to the
serious potential consequences of any error. This processing at MOC requires a full working day
and must be completed in advance of the DTCP; if the DTCP is early in the day or at the weekend
this means that the task must be completed the previous working day.

Essentially, the peculiarities of the Herschel mission compared to on-line missions and the series of
effectively uncompressable response times at different stages in the processing chain provide a fun-
damental limit to reaction times in any re-planning scenario.

3.3. Photometry with Herschel
3.3.1. Instrument capabilities

The full wavelength range of Herschel is covered by six broadband (∆λ/λ=3) filters. In SPIRE, all
three filters (250, 350 and 500 µm) are imaged simultaneously on three spiderweb bolometer arrays.
PACS users are able to image with a "red" (130-210 µm) and a "blue" (either 60-85 or 85-130 µm)
filter simultaneously on two bolometer arrays.

Note
Colloquially, but inaccurately, the 130-210, 85-130 and 60-85 micron filters are often referred to as
the PACS "red", "green" and "blue" bands.

This makes Herschel a superb instrument for multicolour surveys. SPIRE can image a square degree
of sky to an instrument noise equal to the extragalactic confusion limit (1 sigma) in 3.3 hours and, of
course, much larger areas of the sky to a lesser sensitivity; note that because of the overheads in-
volved in scan maps (i) making large maps is more efficient than making small maps and (ii) mak-
ing square maps, or maps with a small aspect ratio is somewhat more efficient than making long,
thin strip maps.

The main imaging capabilities are summarised in Table 3.1. As dust is a strong tracer of star forma-
tion, one of Herschel's greatest strengths is the possibility to study the history of star formation in
the universe. By combining PACS and SPIRE data, users will be able to follow the dust emission
signature of starbursts redshifted to increasing wavelengths in ever more distant galaxies; this makes
Herschel an enormously powerful facility for studying the formation and evolution of galaxies.

Observations with Herschel will give a new insight into the process of star and planet formation.
Herschel can study both the processes of star formation in molecular clouds and the debris disks that
are the tracer of planetary system formation in young stars. To date, few debris disks are known and
observations with Herschel, with its wide wavelength coverage, will allow many more to be detec-
ted and studied. Similarly, Herschel observations will be valuable in the study of the later phases of
stellar evolution, particularly circumstellar shells, mass-loss in general and stellar winds.

Finally, Herschel is a powerful tool for studying the physics of the more distant and colder objects
of the solar system: such as the atmospheres of the giant planets, their icy satellites, cometary nuclei
and cometary atmospheres. Herschel observations are permitting the albedos and thus the surface
conditions and diameters of these bodies to be measured with great precision.

Table 3.1. The main imaging capabilities of PACS and SPIRE. Please note that the wavelength range of
detector sensitivity is approximate and the instrument sensitivities depend on the observing mode, so the
values given are only orientative: please consult the relevant observing manual for more detailed values.

PACS SPIRE

Wavelength range 60-210 µm 200-670 µm

Field of view 1.75x3.5' 4x8' (unfilled)

Pixel size 3".2 (60-130 µm), 6".4 (130-210
µm)

18".2 (250 µm), 24".9 (350 µm),
36".3 (500 µm)
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Typical sensitivity (5σ/1hr) 5 mJy (70/110 µm bands), 10 mJy
(160 µm band)

Will reach the confusion limit (see
below)

Confusion limit (ideal case) <0.1 mJy (70 µm), 0.27 mJy (100
µm), 0.92 mJy (160 µm)

5.8mJy (250 µm), 6.3mJy (350 µm),
6.8mJy (500 µm)

Filters 60-85 or 85-130 µm and 130-210
µm (simultaneous)

250, 350 and 500 µm
(simultaneous)

3.3.2. Using SPIRE and PACS in parallel
Herschel offers a parallel mode for users who wish to carry out large-scale mapping programmes
with a wide range of wavelength coverage.

3.3.2.1. The benefits of using parallel mode

Parallel mode allows observers to use both SPIRE and PACS simultaneously in a fast (60 arcsec/s)
and nominal speed (20 arcsec/s) scanning mode to cover very large areas of sky quickly in all three
SPIRE bands and in two of the three PACS bands, to a modest sensitivity. This mode is intended to
make ambitious, multi-band, large area mapping programmes more efficient than carrying them out
individually with each instrument in turn. In this mode SPIRE is the prime instrument and thus the
driver in defining observations and PACS data should be treated more as a "bonus" to observers.

3.3.2.2. The limitations of using parallel mode

SPIRE and PACS point at different places on the sky separated by 21 arcminutes. This means that
this mode is extremely inefficient at mapping small areas of sky. Although a minimum area of
30x30 arcminutes for a Parallel Mode map is permitted by HSpot, alternatives should certainly be
considered for any area of sky smaller than one square degree and possibly even for larger areas
than this.

While the SPIRE integration gets to a depth which is fairly close to the confusion limit, the depth of
exposure is relatively less for PACS, thus Parallel Mode photometry should not be regarded as an
adequate substitute for even moderately deep PACS scan maps.

Although very large areas of sky can be mapped quickly at the high scan speed, the speed of scan in
sufficiently high that some telescope movement occurs before detector readout is complete, giving
rise to a small degree of PSF smearing in the scan direction.

Parallel Mode entails having both PACS and SPIRE cool simultaneously and is thus more demand-
ing in terms of helium usage. As a rule of thumb, for each three parallel cooler re-cycles (6 days of
Parallel Mode use) we reduce mission lifetime by one day with respect to using just PACS or SPIRE
alone. For efficiency of helium consumption, using Parallel Mode is discouraged unless genuinely
required scientifically.

3.4. Spectroscopy with Herschel
Herschel offers two types of spectroscopic capability. PACS and SPIRE offer low to intermediate
resolution spectroscopy covering the full Herschel wavelength range. HIFI offers high-resolution
spectroscopy over the range from 157-625 µm (480-1910 GHz) using heterodyne techniques, al-
though there is a small gap in coverage from 213-240 microns (1272-1430 GHz), between the HIFI
5b and 6a sub-bands. Users will thus be able to select a wide range of resolutions from ∆λ/λ=20 to
∆λ/λ=10 000 000 according to the brightness of their source and the science that is required. The
main spectroscopic capabilities are summarised in Table 3.2.

In its highest resolution mode Herschel will offer a velocity resolution as high as 0.3km/s. The
wavelength range covered by Herschel has many thousands of lines of water, atomic transitions and
organic molecules. This will allow Herschel to study the chemistry of the interstellar medium, tra-
cing water and organic molecules in molecular clouds. Herschel will also be able to study the chem-
istry of solar system bodies such as the atmosphere of Mars and the comas of comets in unpreceden-
ted detail.
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All three instruments have a mapping capability in spectroscopic mode, even though HIFI's is some-
what limited, although by no means negated, by the fact that its detector has only a single pixel.
PACS and HIFI can scan the detectors across the sky, accumulating spectroscopic data along the
length of the scan. SPIRE cannot do that, instead it uses a beam-steering mirror to make filled maps.
All three instruments can make a raster map in spectroscopic mode. This allows a spectroscopic sur-
vey to be made either of a region that has been mapped in imaging mode, such as a cluster of galax-
ies, or across a known extended source such as a molecular cloud.

Table 3.2. The main spectroscopic capabilities of PACS, SPIRE and HIFI. For more details please check
the relevant instrument manual.

PACS SPIRE HIFI

Wavelength range 55-210 µm 194-313 and 303-671 µm 157-213 and 240-625 µm
(with gap)

Field of view 47x47" 2.0' (unvignetted) Single pixel (see below)

Pixel size 9" 17", 29" (varies across the
bands)

39" (488GHz), 13"
(1408GHz)

Sensitivity (5σ/1hr, point
source)

2x10-18 Wm-2 (130 µm, 1st
order), 5x10-18 (70 µm, 3rd
order). Continuum: 100
mJy (1st order), 250 mJy
(3rd order)

1.0-2.2x10-17 Wm-2 (high
resolution), 40-88mJy
(low resolution) [5 sigma/
1 hr]

"A few" mK (Band 1a) to
100mK (Band 7b), 1
sigma/1hr

Resolution 900-2100 (1st order,
102-210 µm), 1800-3000
(2nd order, 72-98 µm),
2600-5400 (3rd order,
55-72 µm)

20-1000 1000-107

Note

For the latest information on instrument sensitivities please check the Herschel website at ht-
tp://herschel.esac.esa.int/.

Note also that the PACS sensitivity below 57 microns is very low, although HSpot permits the
entry of line observations at shorter wavelengths.
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Chapter 4. Space Environment
This section will deal with "space environment" aspects of the mission that affect the noise level and
therefore the observatory sensitivity. These include:

• Background, including the telescope, instruments and the celestial background

• Radiation environment (high-energy particles)

• Source confusion (CFIRB and cirrus spatial structure, resolved or partially resolved galaxies)

• Straylight due to sources inside or outside the FoV and to instrumental self-emission

4.1. Background radiation
4.1.1. Telescope background

The Herschel telescope is located outside the cryostat and protected by the sunshade from direct ra-
diation from the Sun. The currently measured telescope temperature is in the range 83-90 K and
shows an annual variation due to the changing heliocentric distance of the Earth and thus L2 (see
below). At this temperature, even given a low emissivity, the source contribution is almost always
only a small fraction of the telescope background. For comparison, the telescope background ‘flux’
is of the order of 1000 Jy, while that of Uranus is ∼ 250 Jy and Neptune ∼ 100 Jy. Therefore, a pre-
cise characterisation of its behaviour is of critical importance.

Figure 4.1. Temperatures of the primary mirror (M1), cryostat vacumm vessel (CVV) and sun-shield
measured from OD40 to OD660. The monotonic increase of temperature from up to OD300 is well cor-
related to the seasonal temperature variation model.

The telescope background depends primarily on:
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• The average temperature: Figure 4.1 shows the temperature of Herschel's telescope primary mir-
ror measured across 620 ODs (from 22nd July, 2009 to 4th March, 2011; the CVV and sun-
shield temperatures are also displayed). The data gathered so far indicate that the temperature is
some 5K higher than predicted pre-launch (this is compensated by the lower telescope emissiv-
ity, see below). On the other hand, the overall trend, characterised by a monotonic temperature
increase with a maximum amplitude of some 6K, is well correlated with the 'seasonal' temperat-
ure evolution mode.

• The effective emissivity: beyond 100µm, this has a stronger influence on the telescope back-
ground level than the temperature. It has been observed that a 1% reduction in emissivity gives a
greater improvement than a 5 K reduction in temperature. The predicted (modelled) telescope
emissivity was < 0.4%/0.8% (for clean/dusty samples; Fischer et al., 2004 [RD11]). Preliminary
results from PACS photometer observations suggest that the actual telescope emissivity is quite
significantly lower (about half the predicted figure; Okumura, priv. comm.)

• The straylight (see Section 4.4).

Small spatial and temporal temperature gradients are important to the background stability. The re-
quirements on the primary mirror (M1) are:

• Maximum temperature difference along the S/C Z axis < 10 K (predicted < 0.5 K)

• Maximum temperature difference along the S/C Y axis < 1 K (predicted ∼ 0.0 K)

• Along the S/C Z axis: dT/dt < 13.0 mK/min

• Along the S/C Y axis: dT/dt < 1.3 mK/min

4.1.2. Instruments
See "Self-emission" under Section 4.4

4.1.3. Celestial background
Thermal emission from interstellar dust (known as interstellar cirrus) dominates the FIR Sky Back-
ground (FIRSB) at lower Galactic latitudes, while the Cosmic Far-Infrared Background (CFIRB) is
more significant towards higher Galactic latitudes, also dominating the confusion noise in the PACS
and SPIRE photometric bands. Intrinsically diffuse and unresolved components of the FIRSB are (in
descending order of their relative contribution, see [RD4] and [RD5]):

1. Diffuse galactic light (interstellar cirrus): quasi-thermal emission of dust in low density gas
clouds in the Milky Way. This is the dominant component for wavelengths λ>70µm.

2. Zodiacal light and emission from the asteroid belt: this is the dominant component of the sky
background at MIR wavelengths.

3. Cosmic far-infrared background (CFIRB): accumulated and unresolved light of distant galax-
ies.

4. The cosmic microwave background (CMB): the CMB also has an important contribution in
strength, but the fluctuation amplitudes are small, and well below the detection limits of PACS
and SPIRE.

5. Intergalactic diffuse emission

6. Integrated starlight: the integrated contribution from faint stars in the Milky Way is an import-
ant component for near- to mid-infrared wavelengths, but has a negligible contribution for
longer wavelengths, e.g. those of PACS and SPIRE.
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A detailed description of the different components of the FIR background is given in the Herschel
Confusion Noise Estimator (HCNE) tool Science Implementation Document ([RD4] and [RD5]).
The HCNE tool can be accessed as a standalone service to provide background estimates (see the
HSC website for more information) or through the HSpot proposal preparation tool.

While the zodiacal light emission is a major contributor to the sky brightness in the MIR range, it is
less important for the FIR and sub-mm wavelengths. Moreover, this emission is quite smooth, lack-
ing fluctuations at arcmin scale (angular resolution of the ISOPHOT instrument on board ISO).
Smaller scale fluctuations, in principle, are likely to exist, but the presence of such structures have
not been yet confirmed by the recent observations of the Spitzer Space Telescope.

Confusion noise due to the integrated FIR-sub-mm emission from faint asteroids individually below
the detection limit has been investigated by Kiss et al. (2006) (see [RD5] and references therein). It
has been found that the distribution of asteroids concentrates towards the local anti-solar direction,
with a corresponding peak of the confusion noise in the anti-solar point, and an extended cloud is
present around the maximum. Seasonal variations are also detected. The confusion noise induced by
the cloud of asteroids would only be not negligible in the area around the anti-solar direction, but
this area of the sky is closed to Herschel anyway due to the satellite's Sun constraint (see
Section 2.3), so the asteroid cloud component is not considered in the HCNE.

Figure 4.2. Brightness of the night sky, excluding contribution of the extragalactic background (from
[RD5], adapted from Leinert et al. 1998, A&A, 127, 1). The spectral range covered by the PACS and
SPIRE instruments of the Herschel Space Observatory are indicated. Atmospheric contributors, affect-
ing ground-based observation in the optical and NIR, have been also displayed.

The interstellar medium shows a strong concentration around the Galactic plane; this feature is con-
spicuous at many wavelengths. However, the cirrus emission is not limited to low Galactic latitudes.
It consists of thermal emission of dust in low-density, cool interstellar HI clouds (typically with
T≈20K and n≤102cm-3), showing a smooth, modified blackbody SED. It is a strong source of emis-
sion, and dominates the sky for wavelengths λ>70µm, even at high Galactic latitudes. The cirrus
emission is highly structured, and shows a typical filamentary structure.

The main characteristic of the cirrus emission is its spatial structure at a specific wavelength. This is
usually described by the spectral index, α,of the power spectrum of the image, averaged over annuli
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([RD7]). With this parameter the power spectrum is P=P
o
(f / f

o
)α, where P is the power at the spa-

tial frequency f and P
o

is the power at the spatial frequency f
o
. Due to this parameterisation the

structure of cirrus is equivalent to that of a fractal.

According to [RD5], cirrus confusion noise can be generally described by the following equation:

σ
cirrus

= c
1

× (λ/D)1-α/2 × Bη

Here σ
cirrus

is the confusion noise due to the cirrus component, B is the surface brightness of the
field α is the spectral index of the logarithmic power spectrum, averaged in annuli (see [RD5] and
references therein), λ is the wavelength of the observation and D is the effective diameter of the
telescope's primary mirror. The parameters c

1
and η have to be determined from measurements.

This is used within the HCNE to compute the noise due to cirrus emission. Details on the computa-
tions are given in [RD5].

In many practical cases, Galactic cirrus confusion noise has been found to be easily parameterised as
follows (see for instance [RD6] and references therein):

σ
cirrus

∼ 0.3(λ
100

)2(D
m

)-2.5〈Bλ〉1.5

where σ
cirrus

is given in mJy, λ
100

is the wavelength ratio λ/(100 µm), D
m

is the telescope diameter
in metres and 〈Bλ〉 is the sky brightness in MJy/sr. If we consider fiducial values 〈B

70
〉 = 0.12 MJy/

sr and 〈B
160

〉 = 1.5 MJy/sr (corresponding to N
HI

= 1020 cm-2) and D
m

= 3.5, we get that σ
cirrus

(70
µm) = 0.22 µJy and σ

cirrus
(160 µm) = 0.08 mJy.

4.2. Radiation environment
The L2 environment (and orbits around it) is relatively benign compared to those in geostationary
(GO), or low Earth (LEO) orbits. In particular, a series of common threats for satellites in GO or
LEO, including the neutral thermosphere, space debris, geomagnetically trapped particles and large
temperature gradients, are not a concern for L2 orbits. Environmental aspects to be considered at L2
include:

• Solar wind plasma. Essentially a neutral or cold plasma: 95% protons, 5% He++ and equivalent
electrons; 1-10 particles/cm3. The main risk associated is a low surface charging potential. This
plasma may be relatively benign at L2 compared to that found at GO and LEO.

• Ionising radiation: solar flares (energetic electrons, protons and alpha particles), Galactic cosmic
rays and Jovian electrons.

• Magnetic fields: Earth's magnetotail extends up to 1000 Earth's radii, so it must be considered
(2-10 nT) along with interplanetary magnetic field (∼ 5 nT). The effects on the spacecraft and
PLM include possible orbit disturbance and electrostatic discharge (ESD).

Therefore, the main radiation components at L2 consist of: Galactic cosmic rays, solar particle
events and solar and Jovian electrons. Solar activity follows an 11-year cycle. The last minimum oc-
curred in December 2008 and therefore the Herschel launch in 2009 was carried out during a low
activity state. Contrary to former predictions, the next solar cycle will be below average in intensity,
with a predicted maximum sunspot number of 90. Given the predicted date of solar minimum and
the predicted maximum intensity, solar maximum is now expected to occur in May, 2013 (Solar
Cycle 24 Prediction Panel agreement on May 8, 2009). Therefore Solar particle events are expected
to be problematic only towards the end of the mission. At the time of writing the AO-2 version of
this manual (March 2011), the solar activity is increasing, the proton event observed in OD 663 (7-8
March 2011) being the strongest one observed to date. Notably, there is no noticeable impact of this
increased solar activity in the performance of the instruments or the quality of the science products
at the levels of activity observed so far (maximum ~50 proton flux units in the March 7/8 event).

Weekly, calibrated plots of the Herschel SREM data and special plots of any observed proton events
are available to users, provided by the SREM PI, Petteri Nieminen. These are available at ht-
tp://proteus.space.noa.gr/~srem/herschel/.
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In the early stages of the mission, the dominant radiation source has been Jovian electrons, charac-
terised by a energetic population and a 13-month synodic year modulation. Solar electrons will be
an important source at lower energies with abrupt peak emissions, and a 27-day period.

The Herschel spacecraft is equipped with a standard radiation environment monitor (SREM) placed
in the -Z SVM panel; the SREM is a particle detector developed for satellite applications that has
been added to Herschel and Planck as a passenger. It measures high-energy electrons (from 0.5
MeV to infinity) and protons (from 20 MeV to infinity) of the space environment with an angular
resolution of some 20 degrees, providing particle species and spectral information. The SREM data
are received on-ground and processed by the Space Weather Group at ESTEC, providing valuable
information on the radiation environment at L2. A sample plot showing the calibrated count rates in
three counters (TC1 - protons with E > 20 MeV; TC2 - protons with E > 39 MeV; TC3 - electrons
with E > 0.5 MeV) is displayed in Figure 4.3 .

Figure 4.3. SREM calibrated count rates in three counters (TC1, TC2 and TC3), rebinned in intervals of
five minutes. from the 30th of October 2009 (OD 170) to 27th March of 2011 (OD 683). The slight decline
of the count rates can be explained by an increased solar activity and the subsequent increase of shield-
ing to Galactic cosmic rays. Several events are visble, the most conspicuous a proton flare detected in OD
663 (7-8 March 2011).

4.3. Source confusion
Source confusion is an additional noise factor closely related to the astronomical background, de-
scribed in Section 4.1. The sensitivity limit due to confusion is determined by the telescope aperture,
observation wavelength and the position on the sky. The sensitivity cannot be improved by increas-
ing the integration time after reaching the confusion limit. The most important contributions to
source confusion are:
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• Structure of the CFIRB, as well as resolved and partially resolved extragalactic sources domin-
ate at high galactic latitudes.

• Small-scale structure in cirrus clouds may dominate at intermediate Galactic latitudes. The con-
tribution depends heavily on the level of cirrus emission at the position on the sky.

The confusion noise is usually defined as the (stochastic) fluctuations of the background sky bright-
ness below which sources cannot be detected individually. In addition to the diffuse Galactic fore-
ground cirrus component, these fluctuations are caused by intrinsically discrete extragalactic sources
in the beam. Due to the limited telescope diameter compared to the wavelength, these fluctuations
play an important, if not dominant, role in the total noise budget in extragalactic surveys carried out
in the MIR, FIR and sub-mm range. Moreover, the noise due to extragalactic sources depends
strongly on the shape of the source counts at a given wavelength.

There are two different criteria to derive the confusion noise, and thus the detectability of a point-
like or compact source:

• First, the target source flux should be well above the average background fluctuation amplitude.
This is the basis of the "photometric criterion", derived from the fluctuations of the signal due to
sources below the detection threshold S

lim
in the beam.

• On the other hand, the observed source should be far enough from its neighbours to be properly
separated; this is the basis of the "source density criterion", which is derived from a complete-
ness criterion and evaluates the density of the sources above the detection threshold S

lim
, such

that only a small fraction of the sources are missed because they cannot be separated from the
nearest neighbour.

Generally, we should compare the confusion noise derived from both criteria, in order not to under-
estimate it artificially. The confusion noise, σ

c
, and confusion limit, S

lim
are defined as follows:

σ
c
² = ∫ƒ²(θ,φ)dθdφ∫

0
S_limS²(dN/dS)dS

where ƒ(θ,φ) is the instrumental 2D beam profile, that can be approximated by a Gaussian profile
with the same FWHM as the expected PSF, or by an Airy function, S is the source flux density (in
Jy) and dN/dS is the differential source number counts (in Jy-1sr-1).

Then, the total noise is computed by adding in quadrature the different noise contributions, in this
case the photon (and instrumental) noise and the confusion noise, i.e. σ

total
= (σ

p
2 + σ

c
2)½

The photometric criterion is defined by choosing the S/N ratio q
phot

between the faintest source (of
flux S

lim
and the noise σ

c
due to fluctuations from beam to beam caused by sources fainter than S

lim
,

as given by the implicit equation:

q
phot

= S
lim

/ σ
c
(S

lim
)

q is usually chosen between 3 and 5, depending on the specific objectives.

The source density criterion is defined by setting the minimum degree of completeness of the detec-
tion of sources above the limiting flux S

lim
, which is driven by the fraction of sources lost in the de-

tection process due to a nearest neighbour source with flux above S
lim

too close to be separated giv-
en an instrumental beam size. For a given Poissonian source density N(>S), the probability P of
finding a nearest neighbour with S ≥ S

lim
at a distance closer than the minimum angular separation

θmin is given by:

P(< θ
min

) = 1 - exp(-πNθ²
min

)

An acceptable probability limit is P
max

= 0.1. The minimum distance is usually parameterised using
the FWHM of the beam profile θ

min
= kθ

FWHM
, and 0.8 ≤ k ≤ 1. Fixing the probability we obtain the

corresponding "source density criterion" limiting density of sources:

N
SDC

= -ln(1-P(<θ
min

)) / πNk²θ²
FWHM
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The instrumental beam area, is given by Ω ∼ 1.14θ²
FWHM

. Therefore, for P = 0.1 and k = 0.8, the
density is 1/16.7 sources/beam. The limiting source flux, S

SDC
is thus determined by using existing

number counts results and a suitable model for infrared galaxy evolution extrapolating the data to
the appropriate wavelengths and (faint) flux levels. The confusion noise, σ

SDC
is computed using

the same relation as for the photometric criterion, as the S/N ratio q
SDC

= S
SDC

/ σ
SDC

.

The Herschel confusion noise levels due to extragalactic sources in the different instruments/bands
are being computed from deep maps on 'blank' fields. The preliminary results ([RD11] and [RD12])
are shown in Table 4.1 along with the values predicted by by Lagache et al. 2003 ([RD8]) using
number counts derived from a phenomenological model based on template spectra of starburst and
normal galaxies, and on the local infrared luminosity function. This model has been found to be in
very good overall agreement with ISOCAM at 15 µm, IRAS at 60 and 170 µm and SCUBA at 850
µm (see references within [RD8]). Confusion level predictions for Herschel/PACS have been also
computed by Dole et al. 2004 ([RD9]) based on recent Spitzer/MIPS number counts from Papovich
et al. 2004 ([RD10]) shown in Figure 4.4. They obtain S

SDC
(70 µm) = 0.16 mJy and S

SDC
(160 µm)

= 10.0 mJy. Please refer to the specific instruments' Observers' Manual for an up-to-date informa-
tion regarding confusion noise.

Table 4.1. PACS and SPIRE measured confusion noise, compared to predictions computed according to
photometric and source density criteria. From [RD9]. I.

σ
observed

(mJy) σ (mJy)

PACS 70 µm N/A q
phot

= 5.0 2.26 × 10-3

q
SDC

= 8.9 1.42 × 10-2

PACS 100 µm 0.27 q
phot

= 5.0 1.98 × 10-2

q
SDC

= 8.7 1.02 × 10-1

PACS 160 µm 0.92 q
phot

= 5.0 3.97 × 10-1

q
SDC

= 7.13 9.93 × 10-1

SPIRE 250 µm 5.8 q
phot

= 5.0 2.51

q
SDC

= 5.2 2.70

SPIRE 360 µm 6.3 q
phot

= 5.0 4.4

q
SDC

= 3.6 3.52

SPIRE 550 µm 6.8 q
phot

= 5.0 3.69

q
SDC

= 2.5 3.18

Figure 4.4. Cumulative (left) and differential (right) 24 µm number counts from [RD10]. The differential
counts have been normalised to an Euclidean slope, dN/dSν ∼ Sν

-2.5. The curves show predictions from
different recent models, including that from Lagache et al. 2003.
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4.4. Straylight
The Herschel design has been carried out including the instrument optical layout. This approach al-
lows the level of straylight that originates from the various sources at detector level to be provided
directly. Therefore, the straylight requirements are given directly as the straylight reaching the de-
tector. The following apply over the full operational wavelength range:

• Scattered light from sources outside the telescope FoV: Taking into account the worst pos-
sible combination of the positions of the Moon and the Earth w.r.t. the line of sight (LoS) of the
telescope, the extreme values are:

• Sun-S/C-Earth angle of 37°

• Sun-S/C-Moon angle of 47°

• Sun-S/C-LoS angle of 60°.8 to 119°.2 (in the S/C XZ plane)

• Maximum roll angle of ±1°
The straylight will be < 1% of background radiation induced by the self-emission of the tele-
scope.

• Sources inside the FoV: over the entire FoV at angular distances ≥ 3 arcmin from the peak of
the point-spread-function (PSF), the straylight shall be < 1 × 10-4 of PSF peak irradiance (in ad-
dition to level given by diffraction).

• Self-emission: The straylight level, received at the defined detector element location of the
PLM/FPU straylight model by self emission (with "cold" stops in front of PACS and SPIRE in-
strument detectors), excluding the self emission of the telescope reflectors alone (but including
any other contributor, notably the M2 hexapod), shall be < 10% of the background induced by
self-emission of the telescope reflectors.

According to current straylight analysis for the orbit configuration of Herschel (see [RD3]), for
sources outside the FoV, the straylight radiation is within specification, except for small locations
on the sky, where radiation reflected from rectangular hexapod structures can enter the instruments
directly. These small locations exist primarily for the Moon. Only two minor paths were found
which could be applicable also to the Earth. For the worst-case locations of the Moon, the specifica-
tion is exceeded by a factor 16.4.

For sources inside the FoV, the requirement is met by a wide margin.

Finally, for thermal self-emission, the requirement is not met. Actual values (expressed as a fraction
of the background induced by self-emission of the telescope reflectors) are:

• 30% for PACS and 19% for SPIRE (pessimistic case)

• 12% for PACS and 8% for SPIRE (optimistic case)

The HSC has created a dedicated working group to study the straylight efffects on the Herschel op-
erations. New models based on the 'as built' optical system have been prepared and observations de-
signed to verify the models. Figure 4.5 .
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Figure 4.5. Comparison of straylight optical models produced by M. Ferlet (priv. comm.) and observa-
tional results. In the top row, a Herschel observation has been planned with Jupiter in position 'I', while
in the bottom row the Moon has been placed in position 'F'. In both cases, there is a very good agreement
between the model prediction and the straylight results.
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Chapter 5. Ground Segment
5.1. Ground Segment Overview

The operations of the Herschel Space Observatory are conducted in a decentralised manner. As can
be seen in Figure 5.1, the Ground Segment comprises the following elements:

• A Herschel Science Centre (HSC), provided by ESA, located at ESAC, Madrid. The HSC, sup-
ported by the NASA Herschel Science Center (NHSC), located at IPAC, acts as the point of in-
terface to the science community and the outside world in general. The HSC is supported by the
Herschel Science Team, for the maximisation of the scientific return of the mission, and by the
Herschel Observing Time Allocation Committee (HOTAC) for the selection of observing pro-
posals.

• Three dedicated Instrument Control Centres (ICCs), one for each instrument, provided by the re-
spective PI. Each ICC is responsible for enabling the operation and for the calibration of its in-
strument.

• A Mission Operations Centre (MOC), provided by ESA, located at ESOC, Darmstadt, which is
responsible for the execution of all in-orbit operations.

Figure 5.1. Herschel Space Observatory Ground Segment
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5.2. From proposal to observations
The Herschel Science Centre provides the information required for the submission of proposals in
the Herschel Space Observatory Web site (http://herschel.esac.esa.int), in collaboration with the
ICCs. Astronomers are requested to register to access observatory services, which include the cap-
ability to submit proposals, access to the Helpdesk and retrieval of observational data from the Her-
schel Science Archive.

Proposal entering and submission is done through the HSpot tool (see Section 6.1), the Herschel Ob-
servation Planning Software. A scientific proposal contains at least one AOR, or Astronomical Ob-
servation Request. Each AOR is based on an AOT, or Astronomical Observation Template, which is
a pre-defined observing mode, characterised by an instrument configuration and way of operation
that have been optimised for the execution of a particular type of observation (see Chapter 6). An
AOR is generated when the proposer provides the parameters required for the selected AOT, and is
equivalent to the term "observation" used in this document.

A proposal submitted through HSpot is stored in the Herschel Space Observatory database. The pro-
poser, and co-proposers selected by the principal investigator, are allowed to retrieve, modify and
upload their proposal(s) until the closing date of the AO. At that time, the database is closed to
HSpot, and the HSC distributes the stored proposals to the HOTAC panels. Proposers can check the
status of their proposal(s) in relation to the HOTAC review in the Proposal status Web page (ht-
tp://herschel.esac.esa.int). During the review process, the HSC provides support to the HOTAC and,
on request, assesses the technical feasibility of the observations. In addition, a systematic technical
feasibility assessment is carried out on all accepted proposals.

The period of proposal submission before the HOTAC review is called Phase-1. After the HOTAC
review results are public, proposal submission Phase-2 starts. In this period, observers are allowed
to refine their accepted proposals, modify them following the HOTAC guidelines, and use updated
AOTs and the latest available observatory knowledge. Please see the "Herschel Space Observatory
Call for Proposals: Policies and Procedures" document for a definition of proposal submission
Phase-1 and Phase-2, and for the policies on proposal modifications. The end of proposal submis-
sion Phase-2 results in a consolidated database of accepted proposals and its corresponding AORs.

5.3. Calibration observations
The calibration and cross-calibration of the Herschel instruments is the responsibility of the obser-
vatory, in particular of the ICCs and the HSC. The pointing calibration is the responsibility of the
HSC and the MOC. Therefore, the preparation and scheduling of calibration observations is an ex-
clusive duty of these groups. The calibration data required for the reduction and analysis of the Her-
schel observations will be provided to the astronomer in the form of products in the Herschel Sci-
ence Archive, and is integrated in the Data Processing software.

Calibration and engineering observations were the main components of the schedule during the
Commissioning and Performance Verification phases. Their aim was to achieve the necessary un-
derstanding of the instruments and spacecraft, and attain the required calibration and pointing ac-
curacies to ensure a proper execution and data reduction of the science observations during the Sci-
ence Demonstration and Routine phases. In the routine phase, it is expected that up to 15% of the
available observatory time will be used for calibration. Calibration observations may be based on
non-AOT observing modes defined by the instrument specialists at the ICCs and HSC, but in gener-
al they will be defined using the AOTs available to the community for science observations. Calib-
ration observations are in principle public. However, if a calibration observation is a duplicate of a
scientific observation (see the "Herschel Space Observatory Call for Proposals: Policies and Proced-
ures" document for a definition of "duplication"), the corresponding proprietary rights will apply.
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Chapter 6. Observing with Herschel
Herschel is an observatory mission. Thus, as in ground-based telescopes, the astronomer who is re-
questing the observations must provide all the information necessary to carry them out. These in-
structions are known as an "Astronomical Observation Request" (AOR), which is made using a
standard Astronomical Observing Template (AOT) (see Section 6.3). This information is then con-
verted into spacecraft and instrument commands that are uplinked to the spacecraft to execute the
observations. An additional complication with Herschel is that communication with the satellite is
normally limited to 3 hours each day, so that all the commands to carry out observations must be up-
linked at least 48 hours in advance of the observations being carried out and must be executed
autonomously. This means that far more detail must be defined by the observer than for observa-
tions in a normal groundbased telescope. The system is designed to make the highly complex pro-
cess of defining observations as simple as possible for the observer. The following section describes
this process.

6.1. Introduction to HSpot
The astronomer's interface with Herschel is an observation planning program called HSpot. HSpot
allows the astronomer to define targets and observations, to calculate the time required and likely s/n
and to submit a proposal with the requested observations. At any stage of this process the work in
progress can be saved and recovered later. HSpot has been adapted from the original Spitzer Space
Observatory SPOT program and thus will be familiar to Spitzer users. The part of HSpot directly ad-
apted from SPOT is known as the "Spot Core" of the program and is maintained by IPAC (about
80%), while the HSC maintains the layer of Herschel-specific functionality (about 20%); HSpot in-
corporates a total of more than 30 man-years of work between the two centres.

HSpot can be downloaded from the Herschel Science Centre web page at the url:

ftp://ftp.sciops.esa.int/pub/hspot/HSpot_download.html

Alternatively, select the "Tools" option from the left hand menu of the Herschel Science Centre web
page and "HSpot download" in the tools page.

HSpot is eminently user-friendly and simple to use and has many functionalities that are of interest
even to non-infrared astronomers. New users can generally familiarise themselves with the main
functions in an hour or so of simply playing with the program.

6.1.1. Keeping HSpot up to date
HSpot is updated regularly. For the 2011 Guaranteed Time Call, a completely new and revised ver-
sion will be released (HSpot 5.3), including literally many minor and major updates since the previ-
ous Open Time Call and also numerous updates to the underlying Spot Core. Version 6.0 is projec-
ted to be released for the OT2 Open Time Call. Occasionally, unexpected issues come to light re-
quiring a new update of HSpot, in which case a new release is made that will be downloaded auto-
matically from the HSC. For each new Call and at key points between Calls a new version of HSpot
will be made available with any necessary updates: the default is that HSpot will download these
updates automatically and offer them to you. It is strongly recommended that you do not change this
option, as it may lead to submitting or revising your AORs against a wrong HSpot version, or to
having incorrect time estimates for your AORs (in extreme cases it could even lead to your proposal
being rejected automatically).

Each time that you open HSpot, it will connect to the HSC server and check to see if a new version
is available. If one is found, you will be offered a choice of closing HSpot immediately and re-
opening it with the new version, of waiting to install the new version, or of refusing the update (in
which case automatic updates are disabled in the future). You are strongly advised to accept the up-
date immediately; normally it will be installed and operational in under a minute.

Similarly, occasionally a new time estimator version may be announced when you open HSpot; the
time estimator links your AORs to the latest instrument control software that sets the parameters for
each observation. Normally time estimator changes will not affect the duration of observations now,
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but will effect essential parameters in the set-up of observations. When the time estimator version is
updated, the time estimate for your previously prepared AORs will be shown in red; it is essential to
submit your proposal against the latest time estimator version - to do this, just re-run time estimation
before submission so that all the time estimates are shown in black font.

6.1.2. Will HSpot run on my computer?
HSpot has been developed to run on the three main operating systems currently in use: Unix/Linux,
Windows and Mac. The development work has been carried out on Solaris and ported to these oper-
ating systems and the system has been extensively tested. We thus believe that HSpot should run re-
liably on all the principal operating systems available to users. For each operating system certain
common platforms are supported. Users are strongly urged to use these standard combinations of
operating system and platform, as no guarantee can be offered that HSpot will run correctly on other
combinations and no guarantee can be made of support for other platforms. Similarly, users will un-
derstand that, for example, the Windows version of HSpot has been extensively tested on Windows
XP and Vista.

To date, minimal testing has been done on Windows Seven, but we do not anticipate problems with
its use, have not been notified of any issues and do know that the installer works correctly on this
Operating System, although it has not yet been officially supported. Acceptance testing will be car-
ried out at HSC as standard on Windows 7 from Spring 2011 onwards.

Detailed information on the operating systems and platforms supported can be found in the HSpot
manual. HSpot runs under Java and users are strongly advised to ensure that all updates and patches
of their operating system are installed.

Warning
HSpot will only run on Java 1.6 and later. Older Mac machines that do not support a Dual Core and
64-bit architecture will not install HSpot. Due to the way that Mac handles Java, Mac users have
occasionally experienced minor problems with HSpot that Windows, Solaris and Linux users have
not.

6.1.3. Proposal presentation
Proposal presentation is extremely simple with HSpot. Once the observations to be carried out are
defined and saved, the proposal can be submitted quickly and easily from the "Tools" menu. A sub-
mitted proposal can be retrieved before the deadline for submission and revised as many times as re-
quired; this allows you to submit a draft and then update it continuously so that, even in case of dis-
aster (your local hard disk fails, the Internet falls over just before the submission deadline, etc), HSC
will always have a valid latest version of the proposal. To submit a proposal, apart from the AORs
(that is, the source information, instrumental configuration, exposure time, etc. for each object to be
observed) the proposer needs a text file with the proposal abstract (maximum 2000 characters, in-
cluding spaces), which can be read in directly, a PDF file of the scientific justification (limited to a
maximum of 5Mbt and prepared with the HerschelFORM PDFLatex package that is available on the
Herschel Science Centre webpage) and to give basic information such as the proposal title, list of
co-Is and the observing call that the proposal is responding to.

When a proposal has been submitted HSpot will confirm that it has been transmitted correctly and,
on completion of processing, an e-mail will be received from the HSC Proposal handling System
confirming its successful receipt.

Warning
The time taken to generate and transmit the acknowledgement e-mail is a strong function of the
system load. When the HSC servers are heavily loaded close to a call closure, the acknowledge-
ment e-mail may take tens of minutes or even, in extreme cases, a few hours to arrive. Until this e-
mail is received, you will not be able to retrieve and update the latest version of your proposal. All
proposals to arrive are logged with time of submission and the HSC will know that your proposal is
in the system, even if you have not yet received the formal acknowledgement.

6.2. Types of target
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HSpot deals with two fundamental types of target: fixed targets and solar system objects.

6.2.1. Fixed targets
A fixed target is any object that does not require a differential tracking rate. This can be a star, a
galaxy, an AGN, etc. Herschel works with Equatorial J2000 coordinates and only target entry in
Equatorial J2000 will be accepted (this is to facilitate checks for duplicate pointings [two or more
users requesting similar observations of the same object, or region of the sky], which are extremely
complicated if many coordinate systems are used for target entry). If the source is known to NED or
SIMBAD these coordinates are used, if not, the user must enter a J2000 R.A. and Dec. On some oc-
casions, for nearby stars, the proper motion of the target may become important; this can be entered
in HSpot if necessary, once again, the epoch must be in 2000 coordinates. All fields can be edited
after name resolution.

Some types of observation can be very unforgiving with the coordinates. Typical problems found
are missing "minus" signs in declination and, where several positions are available for a target, pick-
ing an inaccurate one. Many faint infrared sources do not have good coordinates and this must be
bourne in mind when planning observations. Particularly HIFI observations in the high freqency
bands (Bands 6 and 7) are sensitive to poor pointing accuracy and may be affected if the quality of
the position of a fixed target is low.

6.2.2. Moving targets and their treatment
A moving target is a solar system object that requires a differential tracking rate to be programmed.
On target entry the user should select the "Moving" tab and resolve the NAIF ID of the target name.
The Herschel Observations Planning System will use the NAIF ID to calculate coordinates for the
time of observation and to calculate the differential tracking rate required, which should be less than
10 arcsec/minute at the date of observation (this limits the capability of Herschel to see objects
passing very close to the Earth, although faster rates up to 30 arcsec/min may be permitted, on a
case-by-case basis, if scientifically justified). User entry of target coordinates is not permitted, as
any solar system object with a reliable enough orbit to be observed by Herschel will have a NAIF
ID.

Around 800 moving targets (satellites, comets, asteroids and TNOs) are in the HSpot database.
More than a million have been catalogued, but it is obviously impractical to store all of them in
HSpot as most are not observable by Herschel. If you wish to observe a solar system object that is
not in HSpot you should send a Helpdesk ticket requesting that it be added. Allow a minimum of
two or three working days for it to be included and the ephemeris to be linked to HSpot.

6.2.2.1. What is a NAIF ID?

NAIF is NASA's Navigation and Ancilliary Information Facility. This offers an information system
called SPICE for spacecraft navigation. SPICE uses a unique 7 digit identification code for all natur-
al solar system bodies, while spacecraft are identified with a negative integer code. Because of the
simplicity for this system of ID codes and given the increasing possibility of confusion of objects
(for example, there are both planetary satellites and asteroids named Io, Ganymede and Dione and
increasing numbers of asteroids are later found to show cometary activity and may receive multiple
designations), it is increasingly used for telescope scheduling. A short summary of NAIF IDs is giv-
en in the relevant secion of the HSpot Users' Manual on the Standard Ephemeris for moving target
entry.

6.2.2.2. Solar system object ephemeris accuracy

When a Solar System Object has a well-controlled orbit of high accuracy (for a periodic comet this
means two returns for which a successful linkage has been made, for a asteroid or minor body it
usually means observations at a minimum of 6 or 7 oppositions, apart from Earth-crossing objects
for which the criterion is typically 3) it will receive a number from the Minor Planet Center. A
numbered comet has a designation such as 190P/Name, while an asteroid receives just a number. An
unnumbered asteroid has a NAIF ID starting with a 3. Objects with such a designation have a relat-
ively low accuracy ephemeris that may be considerably in error when extrapolated to the future. As
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an example, even an object with three oppositions may have a position that has a 3-sigma error of
more than 60 arcseconds when extrapolated 5 years into the future. If the spread of observations is
unfavourable, or there are few astrometric observations, it may not even be possible to obtain a good
ephemeris extrapolation with a 3-opposition orbit. With 4 oppositions the 3-sigma error in the extra-
polated position may still be greater than 20 arcseconds over 4 years. This means that faint objects
that have not been observed recently may be difficult to locate and identify with Herschel and thus
are high-risk observations. It also means that an object may not be centred on the detector so the res-
ultant data quality may be defficient.

6.2.2.3. What accuracy of ephemeris is required?

Three problems are present when there is uncertainty in the ephemeris. In approximate order of in-
creasing importance these are:

• Possible errors in the required tracking rate.

In general the tracking errors should be kept below 1 arcsecond during the observation.

• Difficulties with photometry

To be carried out successfully, the target must be centred in the array to within a certain level of
accuracy. If this is not achieved, photometry may be difficult or impossible to obtain.

• Problems with target identification

Not all Solar System Objects have suitably accurate ephemerids; occasionally there may be er-
rors of tens of seconds of arc, minutes or even, for a few objects, degrees in the ephemeris posi-
tion. In the HSpot Users' Manual a list of solar system objects included HSpot is given in which
flags objects with deficient ephemerides at the time of writing. Always check to see if a better
orbit is now available.

In detail, the issues that users may find when ephemeris information is uncertain are:

• Tracking

In general this should not be a problem with distant objects, it may become a serious problem
with more nearby ones, particularly Near Earth Objects where it may be difficult to keep the tar-
get accurately centred.

• Photometry issues

For PACS photometry, the source position must be known with high enough precision that it
should fall within a bolometer matrix of 52x52 arcseconds. In practical terms this means that the
following criteria of positional accuracy should be fulfilled.

-- For aperture photometry: 15 arcseconds.

-- For PSF fitting: < 10 arcseconds

For SPIRE the main consideration is that the FWHM of the detectors is 18 arcseconds and the
jiggle amplitude 6 arcseconds: if the positional error is greater than the jiggle amplitude there
will be light losses.

For HIFI it should be remembered that the smallest aperture (that of Band 7b) is 13 arcseconds,
thus necesitating centering at the arcsecond level to avoid light losses.

• Target identification problems

For numbered asteroids the ephemeris should be of sufficient precision in almost all cases.

For unnumbered asteroids and minor bodies it may be essential to take astrometry to refine the
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orbit before observations can be attempted with Herschel.

For numbered and ToO comets, recent astrometry may be essential, depending on the case. A
numbered comet will almost invariably require post-recovery astrometry to refine the orbit be-
fore observation can be attempted. Recently discovered comets with a short orbital arc will also
almost invariably require pre-Herschel observation astrometry to refine their ephemeris.

6.2.2.4. Potential problems with moving targets

Standard practice at the HSC is to download the ephemerids for Solar System Objects from the JPL
Horizons database every 4 weeks, as our planning is done in cycles of 2 weeks. This means that in
an extreme case the ephemeris information for an object may be as much as 2 months out of date.
Normally this does not matter, as the errors will be too small to be significant. If the orbit is well-
defined, the error is usually almost entirely in the direction of motion, so a Solar System Object
(asteroid or comet) will reach a given point in its orbit slightly advanced or slightly delayed with re-
spect to the ephemeris prediction. For Main Belt Asteroids (MBAs) advances or delays of 10 or
more minutes are not unknown; at a typical distance of observation of 2AU this translates into a
very small error in the actual observed position on the sky.

For objects that come closer to the Earth and move more rapidly, the error in the ephemeris may be
much larger, even though the absolute precision of knowledge the object's position may be an order
of magnitude better than for an MBA if it is intensely observed. In one recent case an SSO was
found to be more than 20 arcseconds different from the ephemeris prediction published only 2
months previously. For Near Earth Asteroids an ephemeris may become effectively completely un-
usable in a week or less. Observers should be aware that it is their responsibility to ensure that there
is sufficient knowledge of the ephemeris of a target for effective scheduling and warn HSC to take
the necessary measures to schedule with the most up-to-date available information.

Normally observations are planned and sent to MOC for uplink to the satellite a minimum of 2
weeks in advance and more usually at least 3 weeks in advance. If knowledge of the object's posi-
tion is likely to be insufficient at that time, the observer should request - in advance - that the obser-
vations be re-planned closer to the date of execution, taking advantage of a better ephemeris.

Warning
It is the responsibility of the observer to warn the HSC, via a Helpdesk ticket, of potential ephemer-
is problems that might affect scheduling of a Solar System Object. This should be done far enough
in advance to be taken into account in the standard planning cycle. However, no re-planning of ob-
servations can be contemplated less than 5 days in advance of their execution; if the ephemeris is
potentially not robust for 120 hours in advance of execution, the observations must be designed to
be robust enough to compensate for any positional errors that may occur. It is not sufficient to as-
sume that the HSC will automatically spot all potential conflicts in advance.

6.3. AOT entry
6.3.1. Using AOTs

An AOT is an "Astronomical Observation Template". This will be familiar to users of ISO and
Spitzer. An AOT is a standard observing mode with an instrument that can be translated into in-
structions for the spacecraft to carry out the observations autonomously. Herschel will observe
autonomously between DTCPs, so each observation must be carried out in a standard way that the
spacecraft can understand. Thus, for each of the instruments only pre-defined types of observations
can be carried out. The astronomer produces an AOR (Astronomical Observing Request) by taking
an AOT and customising it for the required observations.

Following the experience of ISO, the number of AOTs has been deliberately restricted to allow ob-
servers as many options as possible, without requiring an unwieldy number of observing modes to
be calibrated.

The first stage in AOR entry is to define the target. If it is a known object its name can be resolved
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with SIMBAD or with NED or, for a solar system target, as a NAIF ID. For unknown names (e.g.
start points for scans), J2000 coordinates must be supplied by the observer. After defining the ob-
ject, the observer should check that it is observable by Herschel by calculating its visibility win-
dows. Bear in mind that when you define your observation further you may end up limiting its visib-
ility to part of the target's unrestricted observing window.

Once the target is defined the observer must then select the required instrument and AOT to be used.
Nine basic observing modes are supported: for HIFI, single point (point source spectrophotometry),
mapping and spectral scans; for PACS, photometry, line spectroscopy and range spectroscopy; for
SPIRE, SPIRE photometer and spectrometer; and the SPIRE PACS Parallel Mode. Each of these
modes is further subdivided, HIFI, for example, offers a choice of fourteen different mixer bands.
PACS photometry allows three variants including the mini-scan maps which have replaced point-
source photometry and chopped raster maps. SPIRE Spectrometer offers point source and raster
maps, three choices of image sampling, and four choices of spectral resolution, etc. HSpot will
guide you through this process of definition with a series of pull-down menus and pop-up windows.

Warning
Although Point Source photometry may be selected through HSpot, it is no longer offered as a sci-
ence mode and remains only for specialist calibration applications. Point source photometry should
be carried out using mini-scan maps only, which are far more sensitive for the same integration
time.

For each observation there is a basic minimum unit of observing time required; the observer need
only specify how many repetitions of this unit time are required -- obviously greater sensitivity is
obtained through more repetitions (four integrations will give twice the sensitivity of a single one -
although for SPIRE, once you reach the confusion limit, you cannot attain better sensitivity however
long you integrate), but the observation takes longer. At any time the "Observation Est..."
(Observation Estimate) button can be pressed and HSpot will give an estimate of the total time that
the observation will take, including the overheads involved, with a break-down of information about
the observation. If the total length of the observation exceeds the maximum permitted, HSpot will
give a warning that the observation duration is out of limits.

Note
The one exception that allows the confusion noise to be beaten is for moving targets - Solar System
Objects (SSOs). By using an off position we can subtract out the background and thus eliminate al-
most completely the confusion noise. For a sufficiently long exposure of an SSO, the target will
move sufficiently during the exposure that end of the exposure can act as the "off" for the start; this
has proved very effective for detecting extremely faint SSOs down to the limiting sensitivity of the
telescope.

The observer can vary the parameters of the observation (more or fewer repetitions, nodding on or
off, larger or smaller chopper throw, a wider or narrower range of wavelengths or length of scan,
etc.) and see how the time estimate varies. Once an acceptable combination of parameters has been
found the observer accepts the parameters that are defined to fix the AOR; this AOR can however
be modified later, if necessary.

When a proposal is submitted, HSpot takes the currently defined list of AORs and links them to the
proposal. It is thus essential to ensure that the correct AOTs and AORs are defined and that the
source visibility and observing time are correct for each target.

6.3.2. Full and limited visibility
The star tracker (the telescope's autoguider) is pointing in the opposite direction in the sky to the
telescope. So, when a target is close to opposition, the star tracker is pointing sunwards. It has been
found that when the solar elongation of a target is greater than 110 degrees direct sunlight falls on
the star tracker baffle, leading to heating and thermal distortion of the star tracker unit. This distor-
tion causes progressive guiding errors that affect not just the current observation, but also all posteri-
or observations until the star tracker has cooled again.

After in-flight study it has become obvious that data quality may be compromised by long exposures
in the region of solar elongation from 110 to 119.2 degrees (the "hot zone"). HSpot will show obser-
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vations in this range as having "limited visibility". In practice this means that according to the de-
gree of incursion into the hot zone increasing strict limits will be put on scheduling. As a rule of
thumb, observations longer than 1 hour will not be scheduled in the hot zone. Observations in the
hot zone will be scheduled at the end of the observing day unless that are very short incursions that
go only slightly into the hot zone: this allows the star tracker to cool during the Daily Telecommu-
nications Period. Only short and extremely urgent observations will be scheduled at more than 115
degrees elongation. Time-critical observations longer than an hour that only impinge slightly into
the hot zone (e.g. SSOs) will be treated on a case-by-case basis.

6.4. Constraints on observations
HSpot allows the observer to define many different kinds of constraints on observations. This may
be to observe an object at a certain time, to carry out observations in a certain sequence, or with a
certain detector orientation, or to repeat observations at a certain interval. However, observers
should be wary of overconstraining their observations and of defining constraints that are not strictly
necessary, as each constraint that is added makes an observation more difficult to schedule.

Warning
Overconstrained observations may be impossible to schedule.

Tip
When you add a constraint, you should use the "AOR Visibility" button (double click on the AOR
to bring up the pop-up with the button) to check that the AOR visibility with the constraint is as
you expect. This button looks at the AOR that you have defined and includes all the factors that
may limit its visibility (map size, orientation constraints, avoidance angles, etc.) and gives you the
effective visibility of the observation.

6.4.1. Chopper avoidance angles
In all chopped observations there is a certain danger that a nearby bright source could lie in the chop
position, which is at 90 degrees to the position angle reported by HSpot. HSpot allows chopper
avoidance angles to be defined. If, even when the chopper throw is changed, it is impossible to
avoid a nearby bright object then defining a chopper avoidance angle should be considered. A chop-
per avoidance angle tells the observation planning system that the observation should be scheduled
in such a way that the chopper will not chop at this range of angles. This however should be done
with great caution as a star that looks bright in a DSS or 2MASS image is unlikely to be bright, even
at the shortest Herschel wavelengths. A chopper avoidance angle is only necessary when there is a
strong far-IR source present in the reference position.

Over the year the apparent rotation of the sky caused by the Earth's orbit around the Sun makes the
position angle of the chopper on the sky change (this is the roll angle of the spacecraft, measured
from north through east, using the spacecraft z-axis as reference - the z-axis is perpendicular to the
orientation of the long axis of the PACS and SPIRE arrays). In other words, by selecting a chopper
angle constraint we are effectively placing a timing constraint on our observations, stating that it
may not be made at certain times of year. However, the Position Angle calculated in has a strong ec-
liptic latitude dependence. For sources in the ecliptic the Position Angle will barely vary with time
during a visibility window. For the two observing windows available each year two values differing
by exactly 180 degrees will be found (Figure 6.1). In these cases defining a chopper avoidance angle
is, at best, irrelevant (as the PA will only vary in a range of a few degrees anyway) and, at worst,
catastrophic because it is may make all observations totally impossible, with no part of the visibility
window permitted.
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Figure 6.1. Position angle variation for sources on the ecliptic and at the ecliptic pole, in the zone of per-
manent sky visibility. For sources at intermediate ecliptic latitude the annual range of variation of PA
will be between these two extremes. These plots were made originally for a Herschel launch in 2007, but
the range and timescale of variation remains unaltered for the actual launch date.

Note

Understanding chopper avoidance angles

HSpot reports the spacecraft roll angle for any particular date of observation. The chop angle will
be perpendicular to this angle. If, when you visualise an AOR, you find a bright source in your ref-
erence position, you must ADD 90 degrees to the PA in HSpot to avoid a position in the chopper
off position. If you have a source in the nod off position you must SUBTRACT 90 degrees to the
PA reported in HSpot.

At high ecliptic latitude we have a zone of permanent sky visibility and the PA of the chopper ro-
tates rapidly with time. Here, even a quite wide chopper avoidance angle range may equate to only a
relatively small effective restriction on dates. Figure 6.1 shows how the PA changes for a source al-
most at the ecliptic pole, which is within the permanent sky visibility zone.

At intermediate ecliptic latitudes there will be a break in the visibility windows, although this may
be small. When the instrument +Z-axis crosses celestial north there will be a discontinuity in the PA
value. Observers should take care of this when defining chopper avoidance angles for sources that
are close to +60 degrees ecliptic latitude. A practical example of this is shown for PACS in Fig-
ure 6.2 for an object at an ecliptic latitude of 59.5 degrees, close to the point at which there is con-
tinuous visibility, but where there is are still two annual visibility windows with a short gap between
them. PA=000 degrees is shown (the horizontal position), along with the plotted positions of the
PACS imaging detectors are for what was the hypothetical case of a 2007 launch of Herschel, with
2008 March 31st (start of visibility window) PA=127.4 degrees, 2008 June 15th (mid-window)
PA=054.6 degrees, 2008 September 10th (end of visibility window) PA=333.7 degrees. The times-
cale and amplitude of variations does not change for the actual launch date.
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Figure 6.2. An illustrative example. The position angle variation for PACS for an object at an ecliptic lat-
itude of 59.5 degrees, close to the point of permanent visibility. The horizontal position is PA=000 de-
grees. The plotted positions of the PACS imaging detectors are for a hypothetical case with 2008 March
31st (start of visibility window) PA=127.4 degrees, 2008 June 15th (mid-window) PA=054.6 degrees, 2008
September 10th (end of visibility window) PA=333.7 degrees. The situation is effectively identical for oth-
er dates.

Warning

Close to the ecliptic even a small range of chopper avoidance angle may equate to a huge schedul-
ing restriction, potentially making observations impossible to schedule. However, given the very
small range of Position Angle change close to the ecliptic, any chopper avoidance angle will either
be irrelevant (the PA will never be within the defined avoidance), or catastrophic (the avoidance
angle range makes the observation impossible by definition by covering the entire range of PA
change).

At high ecliptic latitude it is easier for telescope scheduling to take a chopper avoidance into ac-
count.

However, at high ecliptic latitude the chopper PA will often rotate through 360 degrees giving a de-
phase that must be taken into account when defining a chopper avoidance angle.

In all cases an observer should consider very carefully if defining a chopper avoidance angle is
really, genuinely necessary.

All constraints on observations imply an increased observing overhead and thus decreased ob-
serving efficiency.

6.4.2. Map orientation constraints
PACS and SPIRE offer the possibility to define a map orientation constraint. In other words, the
telescope should scan in a certain direction only, or within a certain range of directions. Further de-
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tails of such orientation constraints and their limitations can be found in the relevant instrument
manual.

Warning
An map orientation constraint equates to a telescope scheduling restriction and implies that an ob-
servation may only be made at a certain, limited range of dates, thus making their execution more
problematic. Over-restricting observations may mean that for operational reasons it becomes im-
possible to carry them out.

6.4.3. Fixed time observations
In certain cases there may be a strong scientific reason for requesting that an observation be carried
out at a fixed time. A flag can be put in the AOR defining that the observation be carried out at a set
time defined by the astronomer. This obliges the observation planning system to block the observa-
tion at this date and time, usually to within a few seconds, although at the cost of putting severe con-
straints on telescope scheduling, particularly as instruments have to be blocked by days.

A less constraining way of fixing the time is to define a timing window during which the observa-
tion should be carried out. A range of dates may be defined during which the observation must be
made. This gives the observation planning system more liberty to work around the constraint.

6.4.4. Concatenation of observations
Concatenation or chaining of observations may be defined to oblige the observation planning system
to carry out observations together. Concatenation improves planning efficiency by avoiding the need
for unnecessary slews, so the observer benefits because no slew overhead is applied to the observa-
tion).

Note
The saving may not always be exactly 180 seconds because some set-up is done while the tele-
scope is slewing and so, if a set-up needs to be done for the second, or later observation in a con-
catenation - for example, an internal calibration - this time will still be charged against the observa-
tion.

Concatenation is essential for scan maps, or mini-maps where there is a need to scan in the normal
and the crossed direction, to oblige the two scans to be made together and may be convenient in
many other cases. This may also be important in the case of a variable object where it is essential
that two or more observations are carried out as close to each other in time as possible (an example
of such a case might be the need to obtain photometry with PACS at 60-85µm, 85-130µm and
130-210µm, requiring two AORs to be defined that might otherwise be carried out on different
days); even for non-variable objects, it is convenient to concatenate observations with PACS at
60-85µm, 85-130µm to avoid slewing away from the object and then back again to take the observa-
tion in the second filter, thus adding unnecessary overhead to your observations.

Four methods of chaining of observations are permitted:

• Concatenation of observations

Two or more AORs for the same target are linked together (concatenated). These must use the
same instrument and the same observation type (i.e. you cannot combine PACS and HIFI spec-
troscopy in a single chain, nor can you combine SPIRE photometry and spectroscopy in a single
chain, nor SPIRE PACS Parallel Mode with any other PACS, SPIRE or HIFI mode). At present
HSpot does not permit observations in different HIFI bands to be chained either. You can mix a
SPIRE photometry map and point source photometry, or a PACS Line Spectrum and a Range
Spectrum. The mission planning system will treat these observations as a single pointing. If it is
important for observations to be carried out together, they should be concatenated.

Targets must be separated by no more than 1 degree to be chained. When several pointings are
included in a chaining, all must be within one degree of the first position to be defined in the
chain to be valid. Fixed and moving targets can be chained, although it is the observer's respons-
ibility to ensure that they will be less than 1 degree apart at some point during the mission and

Observing with Herschel

53



thus that the observation is schedulable.

Note
There is one exception to the 1 degree rule: to maximise the scientific efficiency of PACS un-
chopped spectroscopy the reference position for an AOR may be up to 2 degrees away.

As many chains as are required may be defined and as many observations as are required may be
put in each chain, but the total observing time requested in each chain must be less than 18
hours.

The great advantage for the observer, apart from ensuring that observations are carried out to-
gether, is to avoid the need for a slew between integrations, thus saving a 180 or 600s slew over-
head.

• Follow-up observations

This mode is for repeat observations, for example of a variable source. A time between repeat
observations can be defined. Chained observations can be cloned so that the entire chain is re-
peated after a number of hours or days. The chain or sequence can be repeated several times if
monitoring is required over a period of time.

Warning
The observer can request that a sequence be carried out with a very exact interval, or within a band
of time (e.g. each observation should be within 8 and 12 days of the previous one). The stricter the
constraint, the more difficult it will be to accommodate the observations in the observing schedule,
to the point that highly constrained observations may be impossible to carry out. There is a regular
planning cycle of instruments over each two week period, with instruments available on set days in
each period: your constraints should be compatible with this cycle.

• Sequencing

This mode is to carry out observations in a particular order, although not necessarily the same
day. This may be necessary when two or more measurements are required and it is essential that
one be carried out first to allow the other observations to be reduced when carried out.

• Group within

In this mode observations must be carried out in a certain time frame, but with no constraint as
to when. An observer can specify that all the observations in the group should be carried out
within a maximum of, for example, one month; in this case the observatory planning system will
complete all the AORs within a month of carrying out the first one. The observations may be
carried out in any order within this time interval.

6.5. Limiting length of observations
6.5.1. Fixed targets

There are a series of fundamental constraints on the length of observations with Herschel. There is
an operational constraint that the coolers on PACS and SPIRE must be recycled for approximately 2
hours every 48 hours. However, in practice, the limit is imposed by the need to have a 3-hour daily
telecommunications period (DTCP) with the ground station to download data and upload instruc-
tions every day and up to 3 hours each day are also reserved for routine calibrations. Thus there is a
limit of 18 hours to individual observations with Herschel that is hard-wired into HSpot. Observers
who wish to take longer observations than this must split their AOTs into shorter segments. Special
care should be taken when requesting observations close to the 18 hour limit that they will remain
possible even if there is a slight change in on-board observation or calibration strategy as knowledge
of the instruments improves in-flight. Very long AOTs impose strong constraints on mission plan-
ning and may be difficult to accommodate in the telescope schedule because they will effectively fill
an entire observing day and block it for other observations. However, for a photometric deep integ-
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ration on a fixed target, the telescope can only stare at a single point in space for 50000s (13.9
hours) thus, the maximum point source photometry AOR length is significantly shorter than 18
hours.

6.5.2. Moving targets
Moving targets must be dealt with in mission planning in a different way to fixed targets, as the
spacecraft must calculate an instantaneous position and track on it, rather than on the stars. This re-
quires the mission planning software to interpolate the position of the object at any moment from
the Chebyshev Polynomials that define the target's ephemeris. This process may not be valid for in-
tegrations longer than 5 hours on fast-moving targets, hence the tracking accuracy cannot be guaran-
teed for longer moving target AORs; HSpot places a blanket limit of 5 hours on the duration of a
single AOR for solar system objects.

6.6. Observing overheads
Each observation that is made with Herschel implies certain overheads. These are detailed in the
time estimation breakdown and are charged against the observation. The onus is thus on the observ-
er to make observations as efficient as possible so that precious observing time and thus irreplace-
able helium is not wasted on unnecessary overheads.

6.6.1. Telescope slew time
Herschel takes a certain amount of time to slew between targets. The median slew time has been
found in the early phases of routine observing, as expected, to be of the order of three minutes
(although this depends critically on the density of targets in the sky, which differs for different in-
struments), thus all unconstrained observations are charged 180s as observatory overhead for slew-
ing the telescope (for constrained observations a 600s slew overhead is applied - see Section 6.6.4).
It is still possible that at a later date the 180s median slew overhead will change as the observing
database is filled to its maximum extent and our knowledge of source distribution and the effective
distribution of slews on the sky becomes more complete. For concatenated observations on the same
target a zero telescope slew overhead is applied.

6.6.2. Scans and rasters
When making maps there are certain overheads implicit in the process.

6.6.2.1. Raster maps

In a raster map the telescope must make a slew, stop and wait for the pointing to be stabilised. Due
to the satellite's large moment of inertia the process of acceleration, deceleration and stabilisation
adds a significant dead time (of the order of 5s) to the measurement in each position. This value has
been optimised in the light of in-flight experience and is now not likely to change further.

6.6.2.2. Scan maps

Scan maps have generally been more efficient and added less overhead to an observation than a ras-
ter map, although for a scan map the calculation of the overhead is uses a complex formula because
several variables are involved. In this case the overhead is the acceleration at the start of a scan and
the deceleration at the end of the scan, which will vary according to the length of the scan itself (for
short scan legs the telescope will spend a much larger fraction of the time accelerating and deceler-
ating). The telescope then makes a small slew to the start position for the return scan.

Although mini-scan maps look inefficient due to these overheads compared to point source photo-
metry, in fact they go significantly deeper in the same total time and produce much more accurate
photometry.

6.6.3. Internal calibration
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Each observation requires an internal calibration against black body sources maintained at rigidly
controlled temperature. These measurements are essential to the health and success of all observa-
tions and are thus charged against the observation. The calibration time is typically in the range
30-300s according to the AOT used.

If the calibration time is less than the slew overhead, it is not charged to the user as an overhead as
the calibration is carried out in its entireity during the slew; when this calibration time excedes the
slew overhead that has been applied, the excess is charged as an overhead to the astronomer. Obvi-
ously, if two observations are concatenated and no slew is involved, the whole of the calibration
block has to be charged against the observation; for this reason there may still be a small overhead
on concatenated observations.

6.6.4. Constrained observations
Constrained observations (see Section 6.4) limit the telescope scheduling and limit observing effi-
ciency, producing what are effectively hidden overheads (e.g. the telescope is forced to slew to a
point on the sky that would not be picked otherwise, making the scheduling less efficient), thus a
flat rate of 600s will be charged on all constrained observations, in addition to other observational
overheads.

If a constrained observation is concatenated, the 600s overhead is applied only to the first observa-
tion.

For a fuller definition of what constitutes a constrained observation that will be charged a 600s over-
head, please see the (Policies and procedures) document.

6.7. Details to take into account in the obser-
vation of moving targets
6.7.1. Background and PA variations

For all targets the main components of background are the zodiacal light (at short wavelengths, with
only slow angular variations and little granularity) and the Interstellar Medium (ISM) at longer
wavelengths (with much greater granularity). For a fixed target the ISM will have a fixed value at
any wavelength, being highest for targets in the Galactic Plane and the zodiacal light will vary with
ecliptic latitude and solar elongation. For a moving target the ISM background will, logically, vary
with time, although these variations will be a function of the object's heliocentric and geocentric dis-
tance - for distant planets the time variations will be slower but, as a corrolary is that an object will
take longer to escape from a region of bad background. Note that Infrared Cirrus is highly structured
and this structure will affect observations of faint targets. For very faint solar system targets, or
where high signal-to-noise is essential, a careful examination of the cirrus may be necessary to look
for a hole in the background that will allow deeper observations; once a suitable hole is identified,
you can put a time constraint on your observations to ensure that they are made against it - HSC
Mission Planners will make great efforts to satisfy such requests, when properly justified.

As an example, the following shows how the PA (Figure 6.3) and the estimated background at 80
microns (Figure 6.4) vary through a visibility window for the satellite Triton of Neptune (NAIF ID
801). At this wavelength the zodiacal light dominates and increases as the solar elongation de-
creases. Note too how the PA barely changes over the duration of an observing window, meaning
that the chopper throw is almost fixed in direction with time; this has strong implications for any po-
tentially orientation-constrained observations.
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Figure 6.3. PA variation for a typical solar system object: Neptune's satellite Triton. Note how the PA
variations over the course of a full observing window amount to less than 2 degrees. This makes it effect-
ively impossible to accomodate map orientation or chopper angle avoidance constraints. Although this
example was calculated originally for a Herschel launch in 2007, the amplitude and timescale of vari-
ation remains the same for the actual launch date.

Figure 6.4. The background variation for Triton at 80 microns. The background is dominated at this
wavelength by the Zodiacal Light contribution. As the elongation changes over the course of the ob-

Observing with Herschel

57



serving window the background effectively doubles with time. At longer wavelength the ISM component
will also change as the target moves across areas of different background. For objects relatively close to
the Sun the ISM component may vary enormously in a comparatively short space of time. Although this
example was calculated originally for a Herschel launch in 2007, the amplitude and timescale of vari-
ation remains the same for the actual launch date.

6.7.2. Satellite visibility
Note that for satellites of solar system objects HSpot only calculates the visibility window with a
solar elongation criterion. It does not take into account if the object is genuinely observable by Her-
schel. It is the astronomer's responsibility to make the necessary checks. Many solar system satel-
lites experience transits and occultations by their parent planet. Similarly, a satellite may not be re-
solved at the wavelength of observation, or instrument safety constraints may make it impossible to
observe a satellite when at less than a certain elongation from the parent planet, or only on one side
of the planet. Please contact Helpdesk (http://herschel.esac.esa.int/esupport/) for specific, detailed
enquiries about this topic.

Warning
In photometry mode, instrument safety will not allow Jupiter or Saturn to enter the field of view at
any point of the observation.

As an example, the following plots show how the elongation of Io, Jupiter's innermost Galilean
satellite (NAIF ID 501), varies from the centre of the disk of Jupiter. In the first plot (Figure 6.5) we
see how the elongation varies with time over part of a visibility window. In the area marked in grey
the satellite is either in transit, or occulted and thus, by definition unobservable. The second plot
(Figure 6.6) shows the offsets in R.A. and Dec. (in arcseconds) over a full observing window. The
ellipse marks the approximate size of the disk of Jupiter which suffers a variation of about 10% with
time. Note that the entire area of the plot is smaller than the PACS or SPIRE instrument array (see
Table 3.1).

Figure 6.5. The variation of the elongation of Io from the centre of Jupiter with time. The area in grey is
the region when Io is either superimposed on the disk of Jupiter (in transit) or behind the disk of Jupiter
(occulted). HSpot does not warn the user if visibility of a planetary satellite is limited in this way.
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Figure 6.6. The variation in the offset of Io from the centre of Jupiter through an entire visibility win-
dow. The grey ellipse represents the approximate mean size of the disk of Jupiter. Note that the entire
area of this plot is smaller than the field of view of either PACS or SPIRE. If requesting observations of a
planetary satellite the observer should check the visibility of the satellite using the JPL Horizons pro-
gram at the url: http://ssd.jpl.nasa.gov/horizons.cgi.

Warning
If requesting observations of a planetary satellite the observer should check the visibility of the
satellite using the JPL Horizons program at the url: http://ssd.jpl.nasa.gov/horizons.cgi. The eph-
emeris should be requested specificially for the "Herschel Space Observatory" (site code
"500@-486). The observations will almost certainly have to be entered in HSpot with a time con-
straint save for small, distant satellites.
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Chapter 7. Mission Planning and
Observation Execution
7.1. Mission planning activities

The observatory schedule is defined by the database of accepted observations. The HSC carries out
a careful study of the observation database to define a long-term mission plan that will accommod-
ate all constraints and will maximise the scientific return. The Long Term Mission Planning tool de-
veloped at HSC is a very powerful aid to identifying potential future scheduling problems at a very
early stage.

Following the agreed long term mission plan, short term observing schedules, together with the cor-
responding instrument commands, are produced with the Mission Planning System at the HSC, and
transferred to the Mission Operations Centre (MOC), at ESOC. MOC adds the satellite commands
and produces the final detailed mission timeline that is uplinked to the spacecraft.

The basic time unit for the mission planning is the Operational Day, or OD, defined as the interval
of time between the start of two consecutive DTCPs. The DTCP, or Daily TeleCommunication Peri-
od, is the time interval when the spacecraft antenna will be pointed to the Earth to receive telecom-
mands and send the recorded data. The duration of an OD will normally be about 24 hours, but de-
pends on the availability and detailed schedule of the New Norcia Ground Station, which is shared
with other ESA missions. The operational constraints on the Herschel instruments determine that
only observations that use a particular sub-instrument are scheduled in a single OD. For sub-
instruments that require cooler re-cycling, only observations with the cooled sub-instrument (e.g.
PACS photometer) will be scheduled for the duration of the cooler hold time: two to two and a half
consecutive ODs.

Figure 7.1. The default Mission Planning Cycle currently used in routine phase

For a wide range of reasons, from safety to calibration needs, the instrument assignation for each
OD is standardised. It consists of the repetition of 28 ODs, i.e. four weeks, during which the instru-
ments follow one another and are used for a different number of consecutive ODs. The standard in-
strument distribution currently used currently during the routine phase is the one shown in Fig-
ure 7.1, which reflects the relative usage of each sub-instrument in the approved proposals so far,
and can be revised according to the each instrument observing time preassure at different epochs of
the year. This is what we call the "planning cycle", which is the foundation of most of the Ground
Segment activities related to Mission Planning. This translates into an additional difficulty to acco-
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modate observations that have been defined with timing or grouping constraints shorter than a few
weeks.

The use of the different HIFI bands is an additional constraint on the optimisation of observatory
time. Very limited HIFI band changes are allowed in a given OD, preferably no more than two.
Therefore HIFI observations using different bands and with time constraints shorter than an OD will
be very difficult to schedule.

As indicated when requesting the visibility window of an observation with HSpot, it is limited by
the so-called "warm" attitudes, i.e. solar aspect angles between -30 and -20 degrees, in which the
Sun warms the star trackers and the pointing accuracy may be de-graded (see Section 2.4). For this
reason the scheduling of observations within this area is to be avoided where possible. Only in cer-
tain, justified occasions, are solar aspect angles between -25 and -30 degrees allowed for less than
one hour, at user's own risk and only when it can be demonstrated that it will not affect later obser-
vations, while potential scheduling at solar aspect angles from -20 to -25 degrees is decided on a
case-by-case basis.

7.2. The execution of the observations
The satellite executes autonomously the mission timeline that has been uplinked during the DTCP.
The observational data is stored on board, and downlinked to the New Norcia Ground Station
(which is backed-up by the Cebreros Ground Station) during the next DTCP. During this period,
which lasts approximately 3 hours, the status of the satellite will be monitored and operational or
emergency procedures will be applied, when necessary. In addition, the mission timeline with the
commands to be executed during the next OD will be uplinked. This though is a rolling process. In
case a DTCP communications linkage with the ground station is missed, the satellite must always
have two operational days of observations stored in the onboard solid-state memory. This means
that the commands to be executed are always added to the end of the onboard file so that, in the case
of a communications failure, there will always be sufficient commands on board to last until the end
of the DTCP of the following OD.

It takes several weeks to complete the planning of an OD, from the compilation of all the inputs
needed, to the building of the mission timeline by the MOC. Therefore if there are special schedul-
ing requests they should be sent via Helpdesk two months in advance in order to be able to apply
them at due time. Due to the complexity of the process, two to three weeks in advance, a draft
schedule will be at user's disposal for him to be aware of the imminent execution of his or her obser-
vations and to be able to request "last chance" changes in view of availability of recent data. Only in
special circumstances will changes be authorised on a shorter timescale.

The downlinked satellite telemetry is transferred from the ground station to the MOC, where it is
consolidated and be made available to the HSC. The HSC retrieves the consolidated telemetry and
auxiliary data from the MOC automatically, and ingests them in the HSC database, propagating the
data to the Instrument Control Centres for each of the three instruments.

Mission Planning and Observation Execution
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Chapter 8. Herschel Data Processing
The scientific analysis of the Herschel observations requires the handling of the Herschel Data
Products, which are stored in the Herschel Science Archive. This chapter explains the contents and
structure of these products, which include raw and processed data, plus calibration and quality in-
formation. It also presents the infrastructure that generates and store them as well as the software
provided to the users to analyze them.

8.1. Herschel Data Products
All Herschel telemetry and auxiliary data will be automatically processed at the HSC with the
Standard Product Generation software (SPG), to produce the observational data products, stored in
the Herschel Science Archive (HSA). The following four levels of Herschel data products are
defined:

• Level-0 data product: Raw telemetry data, as measured by the instrument, minimally manipu-
lated and ingested as Data Frames into the mission data base/archive.

• Level-1 data product: Detector readouts calibrated and converted to physical units, in principle
instrument and observatory independent. It is expected that level-1 data processing can be per-
formed without human intervention.

• Level- 2 data product: Level-1 data further processed to such a level that scientific analysis can
be performed. For optimal results many of the processing steps involved to generate level-2 data
may require human interaction, based both on instrument understanding, as well as understand-
ing of the scientific aims of the observation. These data products are at a publishable quality
level and should be suitable for Virtual Observatory access.

• Level-3 data product: These are the publishable science products where level-2 data products are
used as input. These products are not only from the specific instrument, but are usually com-
bined with theoretical models, other observations, laboratory data, catalogues, etc. Their formats
should be Virtual Observatory compatible and these data products should be suitable for Virtual
Observatory access.

While the generation of level-0 and level-1 data products will be automatic (although, in some cir-
cumstances, some manual intervention may be needed even in Level 1 products), good quality
Level-2 products often need a degree of manual intervantion. Level-3 data products can only be gen-
erated by interactive processing. It is expected that the degree of human intervention necessary to
generate these products will decrease with time, as the knowledge of the instruments' behaviour in-
creases during the mission. This is the same as saying that the quality of the automatically generated
products will be progressively enhanced. However, in many cases, it will not be possible to discard
interactive processing, especially in the derivation of level-3 data products.

In addition to these observational products, calibration, auxiliary and quality control products will
be provided. For more information on the Herschel products, please see the corresponding Instru-
ment Observer Users' Manual. The Herschel Products Definitions document and the Herschel Data
Users' Manual document contain detailed descriptions of all Herschel data products.

8.2. Standard Product Generation
The HSC receives, via MOC, the raw telemetry downlinked from the Herschel spacecraft on a daily
basis after each DTCP (Daily Telecommunications Period). This raw telemetry set, corresponding to
the observations performed in the last 24 hours, the so-called Observational Day, or OD, is ingested
in the local database at the HSC and simultaneously propagated also to the main ICCs for quick-
look analysis activities. A watchdog setup in the data processing system at HSC monitors the system
status after each DTCP ends and automatically decides the readiness of the system to process the
data from that OD based on specific criteria being met. When these criteria are met (completion of
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telemetry ingestion for that OD in the local database and pointing Product availability in the system
for that OD), the watchdog system launches the Standard Product Generation (SPG) pipelines, one
for each observation on that OD, in the distributed computing system (GRID) available at the HSC.
This distributed system uses several worker nodes containing multiple processors that allow parallel
data processing, and is an essential and very powerful infrastructure for the reduction of the large
volumes of data generated by Herschel observations daily. During the automatic data processing of
one observation, level 0, 1, 2 and quality control products are generated. These data products, to-
gether with the inputs used in the processing (auxiliary and calibration data) are 'bundled' together in
a so called observation context, a top level container which is the main output of each individual
pipeline processing. When the pipeline processing finishes and this top level container is created, it
is immediately ingested in the Herschel Science Archive, making it available for retrieval by observ-
ers. The Quality control cycle then starts then on the generated pipeline products, following estab-
lished quality control procedures specific to each observing mode.

The whole process, from observation of an astronomical object to its automatic data reduction using
pipelines and ingestion into the science archive, typically takes less than 48 hrs. This is one of the
unique features of the Herschel mission in which data products are processed and made available to
observers shortly after the data has been taken.

8.3. Quality control
Observation quality control is an important responsibility of the HSC. Its main purpose is to ensure
that the observations have been correctly executed, that their observational data meet the established
requirements, and that they can be processed error free. It is important to note that the HSC will not
assess systematically the scientific validity of individual observations, but will concentrate on their
execution and the data processing aspects.

In combination with the SPG processing, the observational data will be run through the Quality
Control Pipeline (QCP). An HSC operator will inspect visually all scientific Herschel observations
and will proceed according to agreed observatory procedures. For certain types of problems, the op-
erator will request the assistance of the instrument and satellite specialists at the HSC, ICCs or
MOC, who will investigate the reason for the anomaly, assess its impact on the quality of the obser-
vational data and determine possible implications for the ground segment. In severe cases, observa-
tions may be flagged as "failed" in the database, and made available for re-scheduling. For every ob-
servation, quality information will be gathered in a "quality control report summary" product, that is
made available in the Herschel Science Archive, attached to the observational data. The report con-
tains both the automatically generated quality control data and the conclusions of the problem ana-
lysis by the experts, when applicable. Items that will be included in the report are: MOC spacecraft
and operations information, on-board observation execution anomalies (instrument or satellite re-
lated), telemetry gaps, pointing issues, space weather events, instrument specific warnings (e.g.,
high glitch rate), and data processing problems.

8.4. Herschel Science Archive
Herschel data products systematically generated by the SPG pipeline are made available to the users
through the Herschel Science Archive (HSA) immediately after the pipeline processing is com-
pleted, typically 1-2 days after an observation has been executed. Following the completion of some
basic quality control checks, something which may take from a few additional days to weeks, de-
pending on the circumstances, notification e-mails are sent to the data owners that can then be in-
formed about any quality issue affecting their observations.

By using the HSA User Interface, astronomers can search, browse, select and retrieve Herschel data
products according to the observations proprietary rights as explained in Chapter 1 of the Herschel
Data Analysis Guide.

Access to the HSA User Interface is provided from the following link:

http://archives.esac.esa.int/hsa/hsa.html

For every Herschel observation, the data populating the HSA consist of the observational products
generated by the pipeline, containing the scientific data, together with the calibration and auxiliary
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products as described in the Herschel Data Products section. In addition, associated quality informa-
tion, generated to support archive users in the assessment of their scientific products, is also in-
cluded.

The HSA provides data products as FITS format files at different levels of data reduction which can
be used for further processing within the Herschel Interactive Processing Environment (HIPE), or
with any other standard data processing package. It will also host highly processed data returned
from the observers at a later stage in the mission.

8.5. Herschel Interactive Processing Environ-
ment

In addition to standard products, a software called Herschel Interactive Processing Environment
(HIPE) is offered to the astronomical community to reduce the Herschel data interactively (starting
from level-0, -1 or -2 products), and to perform science analysis on them.

The Herschel Interactive Processing Environment (HIPE) enables the user to:

• Access and retrieve data directly from the Herschel Science Archive, although it can also be re-
trieved independently from the HSA User Interface.

• Perform interactive data reduction from raw data to publishable products, using Herschel-
provided and user-developed routines, both in GUI form or in console-batch mode. In particular,
it contains the same pipeline scripts and tasks as the SPG so that users can reproduce the stand-
ard processing and add improvements to it where necessary.

• Visualise and manipulate image, spectral and spectral cube data.

• Perform science analysis with a number of built-in standard and configurable graphical and/or
console-based tools.

• Get access to context-sensitive documentation and help.

The HIPE package does not require commercial licenses and is built to be platform-independent. It
is based on Java and allows scripting programing in jython. The distribution includes source of soft-
ware, calibration data and documentation. In addition, the astronomer will be able to develop and in-
tegrate his/her own data processing algorithms within the system.

Linux, Windows, or Mac installers for the latest user version of HIPE can be retrieved from the fol-
lowing link:

http://herschel.esac.esa.int/HIPE_download.shtml

Currently, a cycle of 4 releases per year is planned, to accommodate the fast evolution of the instru-
ment knowledge and data-processing algorithms in the early phases of the mission.

HIPE is open to external contributions. HIPE pipelines are organised in modules (called tasks), eas-
ily interchangeable by user-customised tasks. The Key Programme consortia and the astronomical
community in general are encouraged to feed back their data products and share the tools and al-
gorithms developed to produce them with the HSC for possible inclusion in the Data Processing sys-
tem.

Note
Data processing offers a number of interest groups for HIPE users. Details can be obtained from
the Data Processing pages of the HSC Web page.
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Chapter 9. Acronyms
2MASS - 2 Micron All-Sky Survey

AAS - Altitude Anomally Sensors

ACA - Altitude Control Axis

ACC - Attitude Control Computer

ACMS - Attitude Control and Measurement System

AGN - Active Galactic Nucleus

AME - Absolute Measurement Error

AOR - Astronomical Observation Request

AOT - Astronomical Observing Template

APE - Absolute Pointing Error

CP - Calibration Pointing

CFIRB - Cosmic Far Infrared Background

CRS - Coarse Rate Sensors

CUS - Common Uplink System

CVV - Cryostat Vacuum Vessel

DTCP - Daily Telecommunications Period

DSS - Deep Sky Survey

EPLM - Extended Payload Module

ESA - European Space Agency

ESAC - European Space Astronomy Centre

ESD - Electrostatic Discharge

ESOC - European Space Operations Centre

FIRSB - Far Infra Red Sky Background

FIRST - Far Infra Red Space Telescope

FoV - Field of View

FIR - Far Infra Red

FPU - Focal Plane Unit

FWHM - Full Width Half Maximum

GO - Geostationary Orbit

GYR - Gyroscope

HCNE - Herschel Confusion Noise Estimator
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HIFI - Heterodyne Instrument for the Far Infrared

HOB - Herschel Optical Bench

HOTAC - Herschel Observing Time Allocation Committee

HSC - Herschel Science Centre

HIPE - Herschel Interactive Processing Environment

HST - Hubble Space Telescope

IA - Interactive Analysis

ICC - Instrument Control Centre

ID - Identification

IPAC - Infrared Processing and Analysis Center

IRAS - Infrared Astronomical Satellite

ISM - Interstellar Medium

ISO - Infrared Space Observatory

LEO - Low Earth Orbit

LEOP - Low Earth Orbit Phase

MOC - Mission Operations Centre

MIR - Mid InfraRed

MLI - Multi-Layer Insulation

NAIF - Navigation Ancillary Information Facility

NASA - National Aeronautics and Space Administration

NED - NASA Extragalactic Database

NHSC - NASA Herschel Sciencce Centre

OD - Operational Day

PACS - Photodetector Array Camera and Spectrometer

PDE - Pointing Drift Error

PDF - Portable Document Format

PLM - Payload Module

PSF - Point-source Spread Function

PV - Performance Verification

QCP - Quality Control Pipeline

RCS - Reaction Control System

RF - Radio Frequency

RPE - Relative Pointing Error

Acronyms

66



RWA - Reaction Wheel Assembly

S/C - Spacecraft

SAS - Sun Aquisition Sensors

SCUBA - Sub-millimetre Common-User Bolometer Array

SED - Spectral Energy Distribution

SPG - Software Product Generation

SPIRE - Spectral and Photometric Imaging REceiver

SREM - Standard Radiation Environment Monitor

SRPE - Spatial Relative Pointing Error

SSO - Solar System Object

SSR - Solid State Recorders

STR - Star Trackers

SVM - Service Module

TBD - To Be Determined

WFE - WaveFront Error

Acronyms
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Chapter 11. Change record
• 2007/02/14: slight change Section 6.4.4 to clarify rules on permitted chainings.

• 2007/02/15: Inconsistency noticed between HSpot and PACS documentation. Short wavelength
cut-off for PACS changed in Section 3.4 to be consistent with HSpot (also changed in PACS
Manual by BA). Resolution information updated to give information on 1st, 2nd and 3rd order
performance.

• 2007/04/11: Resolution information updated to give updated range information on 1st, 2nd and
3rd order performance in Section 3.4 to be consistent with values defined in SCR-3091.

• 2007/04/30: A sub-section is added Section 6.2.2.1 to explain the origin of NAIF IDs.

• 2007/05/29: Some typos corrected in Chapter 5.

• 2007/05/31:

Updates of concatenation rules in Section 6.4.4.

Updates of overhead rules and application in Section 6.6.

Updates of calibration overhead rules and application in Section 6.6.3.

Updates of constrained observation rules and application in Section 6.6.4.

Correct HIFI exclusion half-angles in Table 2.3.

Add SPIRE PACS parallel mode exclusion half-angles as a footnote in Table 2.3.

Update PACS sensitivities in Table 3.2.

• 2007/08/01:

Update to the proposal submission procedure in Section 6.1.3 to take into account the fact that
proposers must now use the HerschelFORM PDFLatex pakage to prepare their scientific case.

Update to the observing modes described in Section 6.2 to eliminate the cluster and shadow ob-
serving target types that currently seem unlikely to be implemented.

Add a section Section 6.2.2.2 on the accuracy of the available ephemerides for moving targets.

Add a section Section 6.2.2.3 on the required accuracy of ephemerides for moving targets for
them to be observable by Herschel.

• 2010/04/30:

Completed revised and updated for OT1 Call.

• 2010/07/08:

Some small changes to Chapter 1.

• 2010/10/29:

Added some notes on Solar System Object scheduling and ephemerid accuracy to Chapter 6.

• 2011/02/03:

Added notes on response time for urgent schedule change requests and ToOs.

• 2011/03/31:
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Complete revision and update of content in line with current knowledge.
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